# APPENDIX DATA TABLES FROM

# **EXPERIMENTAL TECHNIQUES FOR LOW-TEMPERATURE MEASUREMENTS:**

# Cryostat Design, Material Properties, and Superconductor Critical-Current Testing

JACK W. EKIN National Institute of Standards and Technology Boulder, Colorado

Published by Oxford University Press First Printing 2006, Second Printing 2007, Third Printing 2007, Fourth Printing 2011

# **Appendix Table of Contents**

# Data Handbook of Material Properties and Cryostat Design

Each section is keyed to the chapter of the corresponding number. Use "Control F" to rapidly find material

#### 1 General information and cryogen properties

- A1.1 Term-abbreviation-acronym decoder
- A1.2 Fundamental constants
- A1.3 SI conversion factors
- A1.4 Magnetic units: equivalency table
- A1.5 Properties of common cryogenic fluids
- A1.6a Cooling power data for He, H2, and N2
- A1.6b Cooling power data: Amount of cryogenic fluid needed to cool common metals
- A1.7 Suppliers of specialty parts and materials

#### 2 Heat transfer

- A2.1 Thermal conductivity integrals for technical cryostat materials
- A2.2 Emissivity of technical materials at a wavelength of about 10 µm (room temperature)
- A2.3 Heat conductance across solid interfaces pressed together

#### **3 Cryostat construction**

- A3.1 High-thermal-conductivity construction-metal properties: RRR, thermal conductivity, and electrical resistivity
- A3.2 Heat conduction along thin-walled stainless-steel tubing
- A3.3 Pipe and tubing sizes
- A3.4 Screw and bolt sizes, hexagon socket-head sizes, and load limits
- A3.5 Clearances for various types of fits
- A3.6 Common braze materials
- A3.7 Solder: physical properties
- A3.8 Solder fluxes for soft-soldering common metals and alloys
- A3.9 Solder: superconducting properties
- A3.10 Sticky stuff for cryogenic applications
- A3.11 Slippery stuff for cryogenic applications
- A3.12 Degassing rates of synthetic materials
- A3.13 Vapor pressures of metals
- A3.14 Gas permeation constant at room temperature for synthetic materials

#### 4 Cryogenic apparatus wiring

- A4.1a Wire gauge size, area, resistivity, heat conduction, and optimum current
- A4.1b Wire gauge: Metric and American Wire Gauge (AWG) size comparison
- A4.2 Physical properties of common wire materials
- A4.3 Residual resistance ratio (RRR) of selected wiring and conductor materials
- A4.4 Wire insulation: thermal ratings
- A4.5 Thermal anchoring: required wire lengths
- A4.6a Thermoelectric voltages of some elements relative to copper
- A4.6b Thermoelectric voltages of selected technical materials relative to copper
- A4.7 Thermal conductivity of YBCO-coated conductors

#### 5 Temperature measurement tables and controller tuning

- A5.1 Vapor pressure vs. temperature (ITS-90) for cryogenic liquids
- A5.2 Properties of cryogenic thermometers (~1 ~300 K)

- A5.3a Platinum thermometer resistivity vs. temperature above 70 K
- A5.3b Platinum thermometer resistivity vs. temperature below 70 K
- A5.4 Diode and thermocouple voltage-vs.-temperature tables
- A5.5 Magnetic-field correction factors for platinum resistance thermometers
- A5.6 Magnetic-field correction factors for zirconium–oxynitride resistance thermometers
- A5.7 Temperature-controller tuning with the Ziegler–Nichols method

#### 6 Properties of solids at low temperature

- A6.1 Elements: physical properties at room temperature
- A6.2 Specific heat vs. temperature for technical materials
- A6.3 Debye model values of the molar heat capacity and molar internal energy as a function of temperature
- A6.4 Thermal expansion/contraction of technical materials
- A6.5a Ideal electrical resistivity vs. temperature for pure metals
- A6.5b Total electrical resistivity vs. temperature for technical alloys and common solders
- A6.6 Superconductor properties
- A6.7 Thermal conductivity vs. temperature for selected metals, alloys, glasses, and polymers
- A6.8a Magnetic *mass* susceptibility from 1.6 K to 4.2 K of materials commonly used in cryostat construction
- A6.8b Magnetic *volume* susceptibility at 293 K, 77 K, and 4.2 K of structural materials commonly used in cryostat construction
- A6.8c Ferromagnetic traces at 4.2 K induced by welding and cyclic cooling of austenitic stainless steels
- A6.9 Composition of austenitic stainless steels, nickel steels, and aluminum alloys
- A6.10 Mechanical properties of structural materials used in cryogenic systems

#### 7 (i) Specialized resistivity measurement methods

- A7.1 Sheet-resistance measurement of *unpatterned films*
- A7.2 van der Pauw method for measuring the resistivity and Hall mobility in flat isotropic samples of *arbitrary shape*
- A7.3 Montgomery method for measuring the resistivity of anisotropic materials

#### (ii) Sample-holder material properties

- A7.4 Sample-holder materials: thermal contraction on cooling to liquid-helium and liquid-nitrogen temperatures
- A7.5 Superconductor materials: thermal contraction on cooling to liquid-helium and liquid-nitrogen temperatures
- A7.6 Thin-film substrate materials: thermal conductivity and thermal contraction
- A7.7 Ultrasonic wire-bond material combinations

#### 8 Sample contacts

- A8.1 Overview of contacts for low-Tc and high-Tc superconductors
- A8.2 Contact methods for voltage and current connections to bare YBCO superconductors
- A8.3 Optimum oxygen-annealing conditions for silver and gold contacts to Y-, Bi-, and TI-based high-*T*c superconductors
- A8.4 Bulk resistivity of common solders, contact pads, and matrix materials
- A8.5a Argon ion milling rates of *elements*
- A8.5b Argon ion milling rates of *compounds*

#### 10 Critical-current analysis parameters

- A10.1 Effective critical temperature  $T^*c(B)$
- A10.2a Scaling parameters for calculating the magnetic-field, strain, and temperature dependence of the critical current of low-*T*c superconductors
- A10.2b Summary of scaling relations for utilizing the scaling parameters in Appendix 10.2a

#### PREFACE

### Der Teufel liegt im Detail

When I started low-temperature experimental work in graduate school and wanted to know "how to do it," I was struck by the abbreviated "experimental detail section" of most publications that simply stated the sample was mounted in the test apparatus, leads were attached, and the measurement made. But try to "simply" do that. The details are everything. Somehow the vital bits of experimental know-how do not get into print, the specifics of how to do it yourself. This book starts to answer some of the detailed questions about the design and construction of cryogenic probes in general, and superconductor measurements in particular. Simply put, these are the things I wish I had been told when I began.

This text is not about how to perform the vast array of cryogenic measurements; that is an extensive topic covered in many specialized references. Rather, it is about *design* techniques *common* to most measurement cryostats; the appendixes provide materials-property data for carrying out that design.

The mantra for this book is that it be *useful*. Topics include, for example, thermal techniques for designing a cryogenic apparatus that works (instead of one whose temperature is impossible to control), selecting appropriate materials (that do not thermally contract and rip the rig apart, or embrittle and snap), making high-quality electrical contacts to a superconductor (that avoid thermal runaway), and making a critical-current measurement that is believable (and does not vaporize your sample).

No one book can do it all; to really learn, we have to get into the lab and try it out. A wise man once said that the only way to become an expert is to make all the mistakes; it is my hope that this book will shorten that learning curve. In this spirit, I occasionally share a few of my own mistakes, because I think a lot can be learned from what does *not* work.

Audience: The main text is written for specialists, but it also includes introductory material. Thus, it would be useful for a wide range of experimentalists —graduate students, industry measurement engineers, materials scientists, and experienced researchers. In short, the book is intended for anyone interested in techniques for designing and operating effective low-temperature (1 K to 300 K) measurement systems, with special emphasis on superconductor critical-current measurements.

Data-handbook: The extensive appendix is a data handbook for cryostat design and measurements. It was written for specialists in the field of cryogenic measurements who want to save time by having much of the information for designing a new measurement probe collected in one place. These tables have been compiled from information supplied by colleagues and from over fifty years of literature. Appendix contents are listed on the inside back cover and include:

• Electrical, thermal, magnetic, thermoelectric, expansion, specific heat, mechanical, and vacuum properties of cryostat materials

- Data on cryogenic liquids
- Thermometer properties and standard calibration tables
- Properties of construction parts and materials: pipes, tubing, bolts, wire, brazing compounds, solders, fluxes, and sticky stuff
- Suppliers of hard-to-find parts and materials

Up front, I want to emphasize that this is not a review of the literature. It is a compendium of information that I have freely edited and reduced to the bare bones. On most subjects, I have also taken the license to express my opinion of what I like, along with the ideas of trusted associates. When I start learning a new area, I do not want to know all the possibilities in great detail; rather, I would like a road map based on the subjective thoughts of someone who has been there, so I can get started. On the other hand, I do want complete, easy-to-find reference tables and figures so I can return to other possibilities after I have had some experience. The book has been written with this approach in mind. So, for example, a comprehensive table of cryogenic thermometer properties is given in Appendix A5.2, but in the main text (Chapter 5) I recommend which thermometer I would typically use in practical situations. This represents only my opinion, and no doubt others may have different ideas as to what is best. But at least it is a place to start. And the other possible choices are there, tabulated in the appendix for later reference.

Cryogenic measurements are basically a matter of: (1) designing and building a measurement apparatus, (2) mounting samples, and (3) making measurements and analyzing the data. The three main parts to this book are organized along these simple guidelines.

I hope this step-by-step integrated approach, the examples, and the collection of appendix data on technical materials will take some of the devil out of the details.

J.W.E. Sydney, Australia Boulder, Colorado

#### DEDICATION

For my dear family: Sharon, Lindy, and Lisa;

and in memory of my close colleague and friend, Steve Bray.

# About the author:

Jack Ekin is a research physicist at the National Institute of Standards and Technology in Boulder, Colorado, where his contributions have spanned a wide range of topics in lowtemperature physics, including studies of fundamental conduction processes in normal metals, electro-mechanical properties of both high- and low- $T_c$  superconductors, and interface conduction in thin films and nanostructures. His discoveries include the first quantitative understanding of Umklapp processes in normal metals, the formulation of the strain and unified scaling laws used to engineer superconductors, and the offset criterion for defining critical current. His early work with high- $T_c$  superconductors led to the first four patents for making practical electrical contacts to these oxide materials. At present, he is engaged in extensive collaborations to measure and understand the physics of strain effects in high- $T_c$  superconductors and advanced conductor designs.

After completing a B.S. degree at the University of Michigan, Dr. Ekin conducted his early graduate work in physics at the University of Heidelberg as a Fulbright Scholar, and received M.S. and Ph.D. degrees from Cornell University. Currently, he holds an appointment as a Senior Research Scientist at the University of Colorado. Outside of his research interests, he serves as a professional fine-art photographer collaborating with numerous open-space organizations. He is a Fellow of the American Physical Society and a member of the Institute of Electrical and Electronics Engineers. He has published over 160 cryogenic research articles, textbook chapters, and patents, and has lectured and consulted internationally in the field of lowtemperature measurements.

#### DISCLAIMER

Trade names, products, and companies named here are cited only in the interest of scientific description, and do not constitute or imply endorsement by NIST or by the U. S. government. Other products may be found to serve just as well.

# **CONTACT INFORMATION**

Enlarged figures, table updates, and additional information are available at <u>www.ResearchMeasurements.com</u> Comments, suggestions, or consultation enquiries can be sent to Dr. Jack Ekin at <u>JackEkin@ResearchMeasurements.com</u>.

#### **EXCERPT FROM INTRODUCTION: ORGANIZATION OF BOOK**

### 1. INTRODUCTION TO MEASUREMENT CRYOSTATS AND COOLING METHODS

*Everything should be made as simple as possible, but not simpler.* –Albert Einstein

### **1.1 Introduction**

No single multitask measurement apparatus exists that is adequate for many different types of measurements over a wide temperature range. Once, I tried to design one—it turned into a "camel" (a camel has been defined as a "horse put together by a committee"). Measurement cryostats can range anywhere from a simple stainless-steel tube (or even a wooden stick) for dipping a sample in liquid helium, to complex systems with multiple vacuum jackets, internal variable temperature control, and radiation windows. In general, the *simpler* the cryostat to do the job, the better; however, always keep in mind that sometimes a little extra complexity makes a cryostat more flexible for a wider range of measurements.

The design and construction process for measurement apparatus is unlike that used for commercial manufacturing. It would probably make most good production engineers shake their heads in disbelief. Measurement requirements change all the time and so the rigs, which evolve, are usually one-of-a-kind affairs. There just is not enough time or return on investment to perform a full-fledged production-line engineering design. So, a lot of it ends up being "seat-of-the-pants" design. In the true experimental spirit, we sometimes have to make an educated guess and simply try it out. Usually a lot of designs will work, and often it just does not matter which you use. But it is essential to do *some* design, especially heat-transfer calculations. "…as simple as possible, but not simpler." The process is a compromise. (Generally, we physicists need to do more engineering than we usually do. We waste too much time fixing stuff that could have been designed better in the first place.)

Also, there is no substitute for selecting construction materials appropriate to the task. Once a rig is build, it is usually an onerous task to replace the main structural supports with a material having a lower susceptibility, better strength, or different thermal contraction coefficient. So, some up-front thinking about material properties can preclude a lot of problems down the road. The text includes an extensive appendix of tabulated heat-transfer data, materials-selection data, and construction information needed for cryostat design. I've also made some effort to supply the *reference sources* for each material's data, so you can go back to the sources for more information.

This book is about the design process and construction techniques that are *common* to most measurement apparatus, not an exhaustive handbook of highly specialized cryostat designs. That we learn mostly from others in our field of specialization and their instrumentation literature. The emphasis is on those aspects of cryostat design and construction that are nearly universal—the challenge of cooling samples and accurately controlling their temperature throughout the cryogenic range under a wide variety of current, magnetic-field, and mechanical conditions. Additional reading on related subjects is given in the *Further-reading* section at the end of each chapter.

### 1.1.1 Organization of the book

Contents of this book proceed from *general to specific*. The first six chapters (Part I) present experimental techniques that apply generally to *cryostat design* and *materials selection*. The next two chapters (Part II) focus on mounting and making electrical connections to samples for *transport* measurements. The last two chapters (Part III) narrow the focus still further and apply the information in the early chapters to one specific transport measurement, *critical current*, perhaps the most widely measured property of superconductors.

Throughout this book, concepts are illustrated with figures directly in the chapters, backed up by detailed tables of data in the *appendix*. (The data tables are collected in the appendix for easy look-up later). Appendixes 1 through 10 parallel Chapters 1 through 10 and represent the information I have always wanted assembled in one place when designing a new test rig. In some sense, the appendixes represent a *formalized lab wall;* that is, an assemblage of material that in many cases I have literally taken off the walls of our laboratories, since they were hanging there for good reason (usually).

#### Part I: Cryostat Design and Materials Selection

Chapter 1 is mainly an *example* chapter, presented at the beginning so you can picture where we are headed. Here, we give an overview of useful types of measurement cryostats for the temperature range from 300 K to about 1 K. We also introduce cooling options and the properties of the most common cryogenic liquids and their powerful cooling capability.

Chapters 2 through 5 focus on practical cryogenic *techniques*. The order of presentation is that of the four steps I usually follow to design and build a measurement rig, or to attach a sample to the cold stage of a cryocooler. First, heat-transfer calculation is the single most important factor in cryostat design (Chapter 2). This is followed by materials selection and construction (Chapter 3), wiring (Chapter 4), and thermometer installation (Chapter 5).

Along the way, a few suggestions are included on how to make a cryostat work. The ultimate success of a rig results more from attitude than technique; it reminds me of a saying on a sign in a factory where a friend worked, and I have never forgotten it: *"Cut to fit, bend to shape, paint to cover."* It simply implies that in the end you have to take time and be creative to "make

it work," to do all the adjusting, fitting, and retooling it takes to get good data. It also means running reality checks to build confidence in the rig's data, as amplified at the end of this section.

Chapter 6 and the accompanying appendix tables describe *material properties* at cryogenic temperatures. Whereas Chapter 3 presents *guidelines* for choosing construction materials, Chapter 6 looks at the *physics* of material properties at low temperatures, giving detailed graphs of properties and tables of data (*thermal, electrical, magnetic,* and *mechanical* handbook values).

### Part II: Electrical Transport Measurements – Sample Holders and Contacts

Chapters 7 and 8 focus on *transport* measurements of both bulk and thin-film samples. These measurements are given special emphasis because of the challenge of *sample mounting* and *connections* when electrical current needs to be introduced into the test sample. The details of sample holders and contacts are the Achilles heel of such measurements as Hall-coefficients, critical current, or thermo-electric coefficients. Poor sample-holder design and contact techniques have led to more "unusual" effects and scuttled more transport measurements than any other factor I know.

# Part III: Critical-Current Measurements and Data Analysis

Finally, in Chapters 9 and 10, we look specifically at superconductor critical-current measurements, which serve to illustrate in a practical way the application of Parts I and II. Although we focus in detail on the measurement of critical current, many of the topics in Chapters 9 and 10 have application to a wide variety of other cryogenic measurements. This measurement provides a rich example of problem solving, including procedures for initial equipment checkout, troubleshooting, automatic data acquisition, reality checks, and detailed data analysis.

So, that is the organization of the book—general cryostat design and construction techniques in the first half, followed by a focus on transport measurements and critical-current testing in the second half. The material *within each chapter* is also organized to proceed from general topics in the first part of each chapter to more specialized techniques in the last part.

In approaching this, or any other book, it is sometimes useful to skip less relevant subjects and look at the parts that best suit your specific requirements at the moment, noting the other material and coming back to read it in detail later when it is needed. To guide you to pertinent sections of the text, I have included in this introductory chapter a *checklist* of questions intended (Sec. 1.3.1) to lead you quickly to information about your specific apparatus. A detailed index and tables of contents for both the main text and appendixes are provided for quick navigation. (The latter is located on the inside of the back cover.)

#### 1.1.2 The last step

Since it is usually not emphasized in textbooks, let me underscore at the outset the main

difference between a good measurement apparatus and anathema. The last step in the cryostat design-and-construction process is running experimental *reality checks* on a new test rig. No book and no one else can do that for us; it is a matter of personal integrity.

Sometimes it is so tempting to rush to publish a new effect from a new rig, just to be first (but ignoring some flaw in the apparatus or measurement technique). Too often, the "new effect" has to be dealt with, wastes everybody's time and money, and contributes to "literature pollution." It is our responsibility to *check the apparatus using (standard) test samples with known properties.* Any new apparatus should yield not only approximately the right results, but *exactly* the right results. It's incumbent on us to trace down every little foible, jump in value, hysteresis, and so on, before it hurts us in a more difficult situation.

My experience is that theoreticians usually take published experimental data at face value and, given enough time and desire, they can find models to explain experimental artifacts. We know our apparatus and experimental procedure like no one else. So it pays to think about simple alternative explanations, especially for "unusual" data.

A reputation is a fragile thing. The more unusual the results, the greater the caution needed. As Carl Sagan often said, "Extraordinary claims require extraordinary evidence."

# 1.1.3 Extra items

*Experimental tips:* From time to time, I have included a few specific suggestions that do not exactly fit the main flow of text, but are, nevertheless, helpful items appropriate to the subject matter. These are indented and flagged by a little pointer  $(\rightarrow)$ .

Two *addenda* are included at the end of Chapter 1:

- *Safety (Sec. 1.6.1)*: This list is a genuine sharing of a few cryogenic situations where we have gotten into trouble. You might as well know up front what does *not* work. "Those who do not learn from history are doomed to repeat it."
- *Transferring cryogenic liquids (Sec. 1.6.2)*: This essential skill is nontrivial; it usually takes many mistakes to become proficient. There is no substitute for having someone knowledgeable *watch* you as you initially learn, but these tips may shorten the learning curve.

*Equations*: Where there are many equations, a box has been drawn around some of them to distinguish the more important relations and, especially in Chapter 10, to indicate sets of interconnected equations.

*Definitions*: Often when starting in a new field, it is helpful to decode a few of the terms we throw around all too glibly. A listing of common terms and ubiquitous acronyms is given in the first appendix (Appendix A1.1).

In this vein, let me mention that I have used the word "cryostat" throughout this book to describe the apparatus or insert that holds samples for measurements. More generally, the term

cryostat can also refer to the insert *plus* the vacuum-insulated container, or "dewar," that holds cryogenic liquids. However, dewars are not the focus of the book, because efficient, well designed dewars are available commercially. Other more colloquial terms I have used to describe the measurement cryostat are: "probe, rig, jig, …".

#### **APPENDIXES**

### DATA HANDBOOK OF MATERIAL PROPERTIES AND CRYOSTAT DESIGN

The following tables provide handbook data for cryostat design and measurements. In many cases the tables serve as a ready collection of *general design information* for quick reference, including SI conversion factors sorted by function, cooling power data, suppliers of specialty parts, heat conduction down stainless-steel tubing, strengths of bolts, metric equivalents, vacuum-design data, wire properties, magnetic-correction factors for thermometers, and so on. In other cases, the tables provide a convenient aid in *material selection*, presenting, at a glance, a condensed overview of the temperature dependence of the properties of many materials (sorted by type of material and property). Once a material is selected, more detailed information can then be obtained for that particular material by referring to the extensive references accompanying each table or to the Internet data sources given in Sec. 6.7.2.

The appendix tables are divided into categories corresponding to each chapter, starting with general information and properties of cryogenic fluids, continuing with heat transfer, construction, wiring, thermometers, properties of solids, sample holders, contacts, and ending with information useful for critical-current analysis. The text sections indicated in parentheses with each appendix table contain specific information on the application and interpretation of the data in that table.

A1. General information and cryogen properties (ref. Chapter 1)

# A1.1 Term-abbreviation-acronym decoder

When starting in a new field, the jargon can sometimes be daunting. The following is only an brief introductory list, given in rractical terms, but it may be useful to help clarify a few of the more commonly used terms, abbreviations, and acronyms.

An accessible multilingual website containing introductory information on *polymers* and their designations is <u>http://www.pslc.ws/macrog/index.htm</u>.

Default nomenclature: Alloy compositions in this book are given in *weight* percent (for example: 2wt%Al or 2%Al) unless specifically indicated as *atomic* percent (e.g., 2at%Al).

<u>AISI</u>: American Iron and Steel Institute, a designation system for steel alloys (Appendix A6.9)

- <u>Alumel</u>: A high electrical-resistivity nickel alloy used for thermocouples consisting of Ni–2%Al– 2%Mn–1%Si.
- <u>ASTM</u>: Formerly known as the American Society for Testing and Materials, ASTM International provides a global forum for consensus standards for materials, products, systems, and services.
- <u>AWG</u>: American Wire Gauge, a designation system for wire size. Appendix A4.1a lists physical information by AWG wire size. Corresponding *metric* wire sizes are given in Appendix A4.1b.
- <u>Bi-2212</u>: A common abbreviation for the high- $T_c$  superconductor material Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+ $\delta$ </sub> (where, typically,  $\delta \ll 1$ ). The name is derived from the subscripts of the first four elements in the compound formula. This superconductor is also sometimes referred to as BSCCO (pronounced "bisco"). ( $T_c \approx 90$  K)
- <u>Bi-2223</u>: A common abbreviation for the high- $T_c$  superconductor (Bi,Pb)<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10- $\delta$ </sub>; also sometimes referred to as BSCCO. ( $T_c \approx 110$  K)
- <u>Chromel</u>: A high electrical-resistivity nickel alloy commonly used for resistive wiring and thermocouples, consisting of Ni–10%Ni.
- <u>Constantan</u>: Another high electrical-resistivity alloy commonly used for resistive wiring and thermocouples, consisting of Cu–45%Ni.
- <u>Critical current</u>  $I_c$ : The maximum amount of current that can be carried by a superconductor before it starts to become resistive. Good commercial superconductors can carry over 1000 A/mm<sup>2</sup> in the presence of a 12 T magnetic field applied perpendicular to the wire.

<u>Critical magnetic field</u>: There are several definitions of critical magnetic field, described in Sec. 10.3.1. Generally, the so-called *upper critical field*  $H_{c2}$  is the practical quantity for low- $T_c$  superconductors, corresponding to the magnetic field above which all superconductivity is suppressed.  $H_{c2}$  values at 0 K for low- $T_c$  materials range up to about 30 T, and for high- $T_c$  materials to over 100 T. Typical values are tabulated for practical superconductors in Appendix A6.6 and plotted vs. temperature in Fig. 10.15. The so-

called *irreversibility* or *depinning field*  $H_{irr}$  is the practical quantity for high- $T_c$ 

superconductors, plotted vs. temperature in Fig. 10.16.

<u>Critical temperature</u>  $T_c$ : The temperature below which a superconductor must be cooled before it becomes superconducting. Typical values for practical low- $T_c$  materials range from about 10 K to 40 K; for high- $T_c$  materials, from about 90 K to 130 K. Values are tabulated for the most common superconductors in Appendix A6.6.

Cryocooler: A cryogenic refrigerator.

<u>Cryogen</u>: Another name for a *cryogenic liquid*, such as liquid helium ( $T_{\text{boil}} = 4.2$  K), liquid neon ( $T_{\text{boil}} = 27$  K), or liquid nitrogen ( $T_{\text{boil}} = 77$  K). The physical properties of common cryogens are given in Appendix A1.5.

<u>CTFE</u>: Polychlorotrifluoroethylene, a type of Teflon<sup>TM</sup>.

<u>ELI Ti-6Al-4V</u>: Extra Low Interstitial form of Ti-6Al-4V. The mechanical properties of titanium strongly depend on interstitial elements (especially oxygen, nitrogen, and carbon), which affect particularly the fracture toughness. ELI grade is a purer form of titanium with a greater fracture toughness.

Ethylene glycol dimethyl terepthalate: Mylar<sup>TM</sup>

- ETP copper: Electrolytic-Tough-Pitch copper [designated by the Unified Numbering System
- (UNS) as C10300]. This is the copper commonly used to make ordinary copper wire. <u>Eutectic</u> mixture: The alloy composition with the lowest melting-temperature; eutectic compositions are particularly useful as solder materials.
- FEP: Fluorinated ethylene propylene, a type of Teflon<sup>TM</sup>
- <u>G-10, G-11</u>: Designations for fiberglass-epoxy composites (commonly used as commercial electronic circuit boards) made from layers of fiberglass cloth filled with epoxy.
- <u>Hastelloy C</u>: A corrosion-resistant nickel alloy consisting of 54%Ni–17%Mo–15%Cr–5%Fe– 4%W.
- <u>HTS</u>: High-*T*<sub>c</sub> (high-critical-temperature) superconductors. Copper-oxide materials having critical temperatures ranging to over 100 K. Also referred to as *oxide* superconductors or *ceramic* superconductors. Examples are: YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> (*T*<sub>c</sub> = 92 K), Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> (*T*<sub>c</sub> = 85 K), (Bi,Pb)<sub>2</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10-x</sub> (*T*<sub>c</sub> = 110 K), (Tl,Pb)<sub>1</sub>(Ba,Sr)<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10+x</sub> (*T*<sub>c</sub> = 115 K), and HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>8+x</sub> (*T*<sub>c</sub> = 135 K).

ISO: International Standards Organization.

ITS-90: The International Temperature Scale of 1990.

KF flange: Klein Flange, meaning "small flange;" a flexible O-ring vacuum coupling.

- <u>LTS</u>: Low- $T_c$  (low-critical-temperature) superconductors. These materials (usually with niobium as the core element) have critical temperatures up to about 40 K and are based on a phonon-coupling mechanism between superconducting pairs of electrons. Common examples are: Nb–Ti ( $T_c = 9.5$  K), Nb<sub>3</sub>Al ( $T_c = 15$  K), Nb–N ( $T_c = 16$  K), Nb<sub>3</sub>Sn ( $T_c = 18$  K), Nb<sub>3</sub>Ge ( $T_c = 23$  K), and MgB<sub>2</sub> ( $T_c = 39$  K).
- Lambda point: The temperature (2.177 K) where normal <sup>4</sup>He (also designated as He I)

transforms into superfluid helium <sup>4</sup>He (also designated as He II); see Sec. 1.2.2.

- Manganin: An alloy commonly used for cryostat wiring and heaters in nonmagnetic applications, consisting of Cu-13%Mn-4%Ni.
- Martensitic phase transformation: A change in the atomic structure of a metal to a new crystalline phase that is usually harder and more brittle. In stainless steels commonly used in cryogenic apparatus, such as AISI 304, 310, and 316, the martensitic phase transformation is precipitated by cooling to low temperatures or by applied stress (Sec. 6.6.5). The martensitic phase of the metal has a lower fracture toughness and is usually ferromagnetic.
- Monel: A high-strength, corrosion-resistant, nickel alloy consisting of Ni-30%Cu.
- <u>*n* value</u>: An index of the nonlinearity or sharpness of the voltage–current (*V–I*) curve near the critical current of a superconductor. It is defined by the relation  $V = c I^n$  (Sec. 10.1.3). Good superconductors have *n* values above 20 to 30.

<u>Nichrome</u>: A highly resistive alloy commonly used for heater wiring, consisting of Ni–20%Cr. <u>OFHC<sup>™</sup> copper</u>: A type of oxygen-free copper [designated by the Unified Numbering System]

(UNS) as C10200; a higher-purity type is designated as C10100].

PCTFE: Polychlorotrifluoroethylene.

<u>PET:</u> Polyethylene terephthalate, Mylar<sup>TM</sup>.

- <u>Phosphor bronze</u>: An alloy commonly used for cryostat and thermometer instrumentation wiring composed of Cu–5%Sn–0.2%P (Grade A).
- <u>PMMA</u>: Polymethyl methacrylate, Plexiglas<sup>TM</sup>.

Polyamide: Nylon<sup>™</sup>.

Polyimide: Kapton<sup>™</sup>.

- <u>Phonon</u>: A wave-like displacement of the atoms from their equilibrium positions in a solid, usually thermally generated.
- <u>Poisson's ratio</u>: A term used in mechanics (Secs. 3.5.3 and 3.5.4) that is the (negative of the) ratio of the *lateral* strain to *longitudinal* strain when a beam is uniformly and elastically stressed along the longitudinal axis. (It simply expresses the fact that the beam becomes narrower as it is stretched, to approximately conserve its volume.) The Poisson's ratio of metals is typically about 1/3, with values ranging from 0.28 to 0.42 for most materials.

<u>PTFE</u>: Polytetrafluoroethylene, a type of Teflon<sup>™</sup>.

Quench: A colloquial term for a thermal runaway event; see Thermal runaway.

SI: The international system of units (Système International d'Unités).

- <u>SQUID</u>: Superconducting Quantum Interference Device. A very sensitive magnetometer able to detect magnetic flux as small as a fraction of magnetic flux quantum  $\Phi_0$  (= 2.0678 × 10<sup>-15</sup> Wb).
- <u>TFE</u>: Tetrafluoroethylene, Teflon<sup>™</sup>.
- <u>Thermal runaway (quench)</u>: A process wherein a small part of a superconductor carrying very high current densities is momentarily heated into the resistive state (by sample movement,

friction, or some other disturbance). The resulting electrical (Joule) heating in this portion of the superconductor then heats additional surrounding superconductor material into the resistive state, resulting in a thermal-runaway process with an ever-growing resistive zone and rapidly increasing Joule heating. When measuring the critical current of a superconducting strand, the Joule heating typically locally melts the superconductor unless the current is shut off quickly (in less than a second). More information is given in Sec. 7.5.1.

- <u>Type I superconductors</u>: Superconducting materials where magnetic field uniformly penetrates the material, suppressing superconductivity at relatively low magnetic fields (typically much less than 1 T). This is the original type of superconductivity discovered in 1911 by Onnes. It was not until nearly fifty years later that practical (high-field) Type II superconductivity was discovered.
- <u>Type II superconductors</u>: Superconductors wherein magnetic field is localized by circulating supercurrents, confining the field to small regions (vortices) and thereby leaving most of the superconductor free of magnetic field; see Fig. 10.7. This second type of superconductivity, which was discovered half a century after Type I superconductors, allows superconductivity to persist to much higher magnetic fields and comprises the practical superconducting materials from which most of today's applications are fabricated. Paradoxically, Type II superconductors have a much lower electrical conductivity in the normal (nonsuperconducting) state than that of Type I superconductors (which are typically pure metallic elements).
- <u>YBCO</u>: The term commonly used for the high- $T_c$  material YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> ( $T_c \approx 92$  K), also sometimes referred to as simply 123 because of the subscripts of the first three elements in the compound.

### A1.2 Fundamental constants

# Fundamental Physical Constants<sup>a</sup>

| Quantity                             | <u>Symbol</u>                                            | Value                                                                               |
|--------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|
| Avogadro constant                    | $N_{ m A}$                                               | $6.022\ 141\ 99 \times 10^{23}\ mol^{-1}$                                           |
| Boltzmann constant                   | $k_{\rm B} = R/N_{\rm A}$                                | $1.380~650~3 \times 10^{-23}~{ m J}{ m \cdot}{ m K}^{-1}$                           |
| electric constant                    | $\varepsilon_0 = 1/\mu_0 c^2$                            | $8.854\ 187\ 817 	imes 10^{-12}\ { m F}{ m \cdot}{ m m}^{-1}$                       |
| electron volt                        | eV                                                       | $1.602\ 176\ 463\ 	imes 10^{-19}\ J$                                                |
| elementary charge                    | е                                                        | $1.602\ 176\ 463 \times 10^{-19}\ \mathrm{C}$                                       |
| Lorenz constant (Sec. 6.4.2)         | $L_{\rm N} = (\pi^2/3) (k_{\rm B}/e)^2$                  | $2.443 \times 10^{-8} \text{ V}^2 \cdot \text{K}^{-2}$                              |
| magnetic flux quantum                | $\Phi_0 = h/2e$                                          | $2.067\ 833\ 637 \times 10^{-15}\ Wb$                                               |
| molar gas constant                   | R                                                        | $8.314 472 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$                     |
|                                      |                                                          | $= 8.314 472 \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ |
| magnetic constant                    | $\mu_0$                                                  | $4\pi \times 10^{-7} = 1.2566 \times 10^{-6} \mathrm{N} \cdot \mathrm{A}^{-2}$      |
|                                      |                                                          | = 1.2566 $\mu V \cdot s \cdot A^{-1} \cdot m^{-1}$                                  |
|                                      |                                                          | $= 1.2566 \ \mu Wb \cdot A^{-1} \cdot m^{-1}$                                       |
|                                      |                                                          | $= 1.2566 \ \mu \text{H} \cdot \text{m}^{-1}$                                       |
| Newtonian constant of gravitation    | G                                                        | $6.673 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$        |
| Planck's constant                    | h                                                        | $6.626\ 068\ 76 \times 10^{-34}\ J\cdot s$                                          |
| speed of light in vacuum             | С                                                        | $2.997\ 924\ 58 \times 10^8\ {\rm m}\cdot{\rm s}^{-1}$                              |
| Stefan–Boltzmann constant (Sec. 2.4) | ) $\sigma = (\pi^2/60)k_{\rm B}^4/(h/2\pi)^3c_{\rm B}^2$ | $c^2$ 5.670 400 × 10 <sup>-8</sup> W·m <sup>-2</sup> ·K <sup>-4</sup>               |

<sup>a</sup> From CRC Handbook of Chemistry and Physics (2002), 83<sup>rd</sup> edition, CRC Press LLC, Boca Raton, Florida.

# <u>Useful approximate equivalents:</u>

Pressure: 1 atm (= 760 torr)  $\rightarrow \sim 10^5$  Pa Temperature: 11 000 K  $\rightarrow \sim 1$  eV Wavelength: 12 000 Å  $\rightarrow \sim 1$  eV

# A1.3 SI conversion factors

# SI: Système International d'Unités (International System of Units)

| Ta | aamaant | from |
|----|---------|------|
| 10 | convent | nom  |

#### to

multiply by

### ACCELERATION

| ft/s <sup>2</sup>   | meter per second <sup>2</sup> $(m/s^2)$ | 3.048 000 E-01 |
|---------------------|-----------------------------------------|----------------|
| free fall, standard | meter per second <sup>2</sup> $(m/s^2)$ | 9.806 650 E+00 |
| in/s <sup>2</sup>   | meter per second <sup>2</sup> $(m/s^2)$ | 2.540 000 E-02 |

#### AREA

| acre<br>barn<br>circular mil<br>ft <sup>2</sup><br>in <sup>2</sup><br>mi <sup>2</sup> (U.S. statute mile)<br>section<br>township | $\begin{array}{c} meter^2 \ (m^2) \\ meter^2 \ (m^2)$ | 4.046 873 E+03<br>1.000 000 E-28<br>5.067 075 E-10<br>9.290 304 E-02<br>6.451 600 E-04<br>2.589 988 E+06<br>2.589 988 E+06<br>9.323 957 E+07 |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| township<br>yd <sup>2</sup>                                                                                                      | meter <sup>2</sup> (m <sup>2</sup> )<br>meter <sup>2</sup> (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.323 957 E+07<br>8.361 274 E-01                                                                                                             |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              |

BENDING MOMENT OR TORQUE

| dyne centimeter | newton·meter (N·m) | 1.000 000 E-07 |
|-----------------|--------------------|----------------|
| kgf·m           | newton·meter (N·m) | 9.806 650 E+00 |
| ozf·in          | newton·meter (N·m) | 7.061 552 E-03 |
| lbf·in          | newton·meter (N·m) | 1.129 848 E-01 |
| lbf·ft          | newton·meter (N·m) | 1.355 818 E+00 |

CAPACITY (see VOLUME)

#### DENSITY (see MASS PER UNIT VOLUME)

### ELECTRICITY AND MAGNETISM<sup>a</sup>

| ampere hour               | coulomb (C) | 3.600 000 E+01 |
|---------------------------|-------------|----------------|
| EMU of capacitance        | farad (F)   | 1.000 000 E+09 |
| EMU of current            | ampere (A)  | 1.000 000 E+01 |
| EMU of electric potential | volt (V)    | 1.000 000 E-08 |
| EMU of inductance         | henry (H)   | 1.000 000 E-09 |
| EMU of resistance         | ohm (Ω)     | 1.000 000 E-09 |
| ESU of capacitance        | farad (F)   | 1.112 650 E-12 |
| ESU of current            | ampere (A)  | 3.335 6 E-10   |
| ESU of electric potential | volt (V)    | 2.997 9 E+02   |
|                           |             |                |

<sup>a</sup> ESU means electrostatic cgs unit. EMU means electromagnetic cgs unit.

ESU of inductance ESU of resistance..... gauss ..... gilbert..... maxwell..... oersted .....

| 1 | 4 |   |  |
|---|---|---|--|
|   | ( | ۱ |  |
| ι | Ľ | , |  |

multiply by

| henry (H)              | 8.987 554 E+11 |
|------------------------|----------------|
| ohm (Ω)                | 8.987 554 E+11 |
| tesla (T)              | 1.000 000 E-04 |
| ampere (A)             | 7.957 747 E-01 |
| weber (Wb)             | 1.000 000 E-08 |
| ampere per meter (A/m) | 7.957 747 E+01 |
|                        |                |

ENERGY (includes WORK)

| British thermal unit (thermochemical) |
|---------------------------------------|
| calorie (thermochemical)              |
| electron volt                         |
| erg                                   |
| ft·lbf                                |
| kilocalorie (thermochemical)          |
| kW·h                                  |
| W·h                                   |
| W·s                                   |

| joule (J) | 1.054 350 E+03 |
|-----------|----------------|
| joule (J) | 4.184 000 E+00 |
| joule (J) | 1.602 176 E-19 |
| joule (J) | 1.000 000 E-07 |
| joule (J) | 1.355 818 E+00 |
| joule (J) | 4.184 000 E+03 |
| joule (J) | 3.600 000 E+06 |
| joule (J) | 3.600 000 E+03 |
| joule (J) | 1.000 000 E+00 |

### FLOW (see MASS PER UNIT TIME or VOLUME PER UNIT TIME)

#### FORCE

| dyne                      | newton (N) | 1.000 000 E-05 |
|---------------------------|------------|----------------|
| kilogram-force (kgf)      | newton (N) | 9.806 650 E+00 |
| kilopond-force            | newton (N) | 9.806 650 E+00 |
| kip (1000 lbf)            | newton (N) | 4.448 222 E+03 |
| ounce-force (avoirdupois) | newton (N) | 2.780 139 E-01 |
| pound-force (lbf)         | newton (N) | 4.448 222 E+00 |
| poundal                   | newton (N) | 1.382 550 E-01 |
|                           |            |                |

#### FORCE PER UNIT AREA (see Pressure)

#### FORCE PER UNIT LENGTH

| lbf/in | newton per meter (N/m) | 1.751 268 E+02 |
|--------|------------------------|----------------|
| lbf/ft | newton per meter (N/m) | 1.459 390 E+01 |

#### HEAT

| Btu (thermochemical)·in/s·ft <sup>2</sup> ·°F<br>(k, thermal conductivity)<br>Btu (thermochemical)·in/h·ft <sup>2</sup> ·°F | watt per meter kelvin (W/m·K)                            | 5.188 732 E+02 |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|
| (k, thermal conductivity)                                                                                                   | watt per meter kelvin (W/m·K)                            | 1.441 314 E-01 |
| Btu (thermochemical)/ft <sup>2</sup>                                                                                        | joule per meter <sup>2</sup> (J/m <sup>2</sup> )         | 1.134 893 E+04 |
| Btu (thermochemical)/h·ft <sup>2</sup> .°F                                                                                  |                                                          |                |
| ( <i>C</i> , thermal conductance)                                                                                           | watt per meter <sup>2</sup> kelvin (W/m <sup>2</sup> ·K) | 5.674 466 E+00 |
| Btu (thermochemical)/lb                                                                                                     | joule per kilogram (J/kg)                                | 2.324 444 E+03 |
| Btu (thermochemical)/lb·°F                                                                                                  |                                                          |                |
| (c, specific capacity)                                                                                                      | joule per kilogram kelvin (J/kg·K)                       | 4.184 000 E+03 |

| Btu (thermochemical)/s·ft <sup>2</sup> .°F |
|--------------------------------------------|
| cal (thermochemical)/cm <sup>2</sup>       |
| cal (thermochemical)/cm <sup>2</sup> ·s    |
| cal (thermochemical)/cm·s·°C               |
| cal (thermochemical)/g                     |
| cal (thermochemical)/g·°C                  |
| °F·h·ft <sup>2</sup> /Btu (thermochemical) |
| ( <i>R</i> , thermal resistance)           |
| ft <sup>2</sup> /h (thermal diffusivity)   |

| angstrom            |
|---------------------|
| astronomical unit   |
| fermi (femtometer)  |
| foot (ft)           |
| inch (in)           |
| light year          |
| micron              |
| mil                 |
| mile (U.S. statute) |
| pica (printer's)    |
| point (printer's)   |
| rod                 |
| yard (yd)           |

footcandle ...... footcandle .....

#### to

| watt per meter <sup>2</sup> kelvin (W/m <sup>2</sup> ·K) | 2.042 808 E+04 |
|----------------------------------------------------------|----------------|
| joule per meter <sup>2</sup> (J/m <sup>2</sup> )         | 4.184 000 E+04 |
| watt per meter <sup>2</sup> ( $W/m^2$ )                  | 4.184 000 E+04 |
| watt per meter kelvin (W/m·K)                            | 4.184 000 E+02 |
| joule per kilogram (J/kg)                                | 4.184 000 E+03 |
| joule per kilogram kelvin (J/kg·K)                       | 4.184 000 E+03 |
| Kelvin meter <sup>2</sup> per watt (K·m <sup>2</sup> /W) | 1.761 102 E–01 |
| meter <sup>2</sup> per second $(m^2/s)$                  | 2.580 640 E-05 |
| LENGTH                                                   |                |
| meter (m)                                                | 1.000 000 E-10 |
| meter (m)                                                | 1.495 98 E+11  |
| meter (m)                                                | 1.000 000 E-15 |
| meter (m)                                                | 3.048 000 E-01 |
| meter (m)                                                | 2.540 000 E-02 |
| meter (m)                                                | 9.460 528 E+15 |
| meter (m)                                                | 1.000 000 E-06 |
| meter (m)                                                | 2.540 000 E-05 |
| meter (m)                                                | 1.609 347 E+03 |
| meter (m)                                                | 4.217 518 E-03 |
| meter (m)                                                | 3.514 598 E-04 |
| meter (m)                                                | 5.029 210 E+00 |
| meter (m)                                                | 9.144 000 E-01 |
|                                                          |                |

multiply by

#### LIGHT

| lumen per meter <sup>2</sup> $(lm/m^2)$ | 1.076 391 E+01 |
|-----------------------------------------|----------------|
| lux (lx)                                | 1.076 391 E+01 |

#### MASS

| grain                    |
|--------------------------|
| gram                     |
| hundredweight (long)     |
| hundredweight (short)    |
| ounce (avoirdupois)      |
| pound (lb) (avoirdupois) |
| slug                     |
| ton (assay)              |
| ton (long, 2240 lb)      |
| ton (metric)             |
| ton (short, 2000 lb)     |

| kilogram (kg) | 6.479 891 E-05 |
|---------------|----------------|
| kilogram (kg) | 1.000 000 E-03 |
| kilogram (kg) | 5.080 235 E+01 |
| kilogram (kg) | 4.535 924 E+01 |
| kilogram (kg) | 2.834 952 E-02 |
| kilogram (kg) | 4.535 924 E-01 |
| kilogram (kg) | 1.459 390 E+01 |
| kilogram (kg) | 2.916 667 E-02 |
| kilogram (kg) | 1.016 047 E+03 |
| kilogram (kg) | 1.000 000 E+03 |
| kilogram (kg) | 9.071 847 E+02 |

#### MASS PER UNIT VOLUME (includes DENSITY and MASS CAPACITY)

| g/cm <sup>3</sup>                  | kilogram per meter <sup>3</sup> (kg/m <sup>3</sup> ) | 1.000 000 E+03 |
|------------------------------------|------------------------------------------------------|----------------|
| oz (avoirdupois)/gal (U.K. liquid) | kilogram per meter <sup>3</sup> (kg/m <sup>3</sup> ) | 6.236 027 E+00 |
| oz (avoirdupois)/gal (U.S. liquid) | kilogram per meter <sup>3</sup> (kg/m <sup>3</sup> ) | 7.489 152 E+00 |
| oz (avoirdupois)/in <sup>3</sup>   | kilogram per meter <sup>3</sup> (kg/m <sup>3</sup> ) | 1.729 994 E+03 |
| lb/ft <sup>3</sup>                 | kilogram per meter <sup>3</sup> $(kg/m^3)$           | 1.601 846 E+01 |

| lb/in <sup>3</sup>              |
|---------------------------------|
| lb/gal (U.K. liquid)            |
| lb/gal (U.S. liquid)            |
| ton(long, mass)/yd <sup>3</sup> |

#### to

| kilogram per meter <sup>3</sup> (k  | g/m <sup>3</sup> ) |
|-------------------------------------|--------------------|
| kilogram per meter <sup>3</sup> (k  | g/m <sup>3</sup> ) |
| kilogram per meter <sup>3</sup> (k  | g/m <sup>3</sup> ) |
| kilogram per meter <sup>3</sup> (kg | g/m <sup>3</sup> ) |

#### multiply by

| 2.767 990 E+04  |
|-----------------|
| 9.977 644 E+01. |
| 1.198 264 E+02  |
| 1.328 939 E+03  |

#### POWER

| watt (W) | 1.054 350 E+03 |
|----------|----------------|
| watt (W) | 1.757 250 E+01 |
| watt (W) | 2.928 751 E-01 |
| watt (W) | 4.184 000 E+00 |
| watt (W) | 6.973 333 E-02 |
| watt (W) | 1.000 000 E-07 |
| watt (W) | 3.766 161 E-04 |
| watt (W) | 2.259 697 E-02 |
| watt (W) | 1.355 818 E+00 |
| watt (W) | 7.456 999 E+02 |
| watt (W) | 6.973 333 E+01 |
| watt (W) | 4.184 000 E+03 |
|          |                |

#### PRESSURE OR STRESS (FORCE PER UNIT AREA)

pascal (Pa)

1.013 25 E+05 9.806 650 E+04 1.000 000 E+05 1.333 22 E+03 9.806 65 E+01 1.000 000 E-01 2.989 070 E+03 9.806 650 E+01 3.386 389 E+03 3.376 85 E+03 2.490 82 E+02 2.488 4 E+02 9.806 650 E+04 9.806 650 E+00 9.806 650 E+06 6.894 757 E+06 1.000 000 E+02 1.333 224 E+02 1.488 164 E+00 4.788 026 E+01 6.894 757 E+03 6.894 757 E+03 1.333 22 E+02

SPEED (see VELOCITY)

STRESS (see PRESSURE)

#### TEMPERATURE

| degree Celsius (°C) | kelvin (K) | $t_{\rm K} = t_{\rm C} + 273.15$ |
|---------------------|------------|----------------------------------|
| e ()                |            |                                  |

| day (mean solar)    |
|---------------------|
| day (sidereal)      |
| hour (mean solar)   |
| minute (mean solar) |
| year (calendar)     |

### to

| $t_{\rm K} = (t_{\rm F} + 459.67)/1.8$ |
|----------------------------------------|
| $t_{\rm K} = t_{\rm R}/1.8$            |
| $t_{\rm C} = (t_{\rm F} - 32)/1.8$     |
| $t_{\rm C} = t_{\rm K} - 273.15$       |
|                                        |

#### TIME

| 8.640 000 | E+04                                                          |
|-----------|---------------------------------------------------------------|
| 8.616 409 | E+04                                                          |
| 3.600 000 | E+03                                                          |
| 6.000 000 | E+01                                                          |
| 3.153 600 | E+07                                                          |
|           | 8.640 000<br>8.616 409<br>3.600 000<br>6.000 000<br>3.153 600 |

#### TORQUE (see BENDING MOMENT)

#### VELOCITY (includes SPEED)

| ft/h                  |
|-----------------------|
| ft/min                |
| ft/s                  |
| in/s                  |
| km/h                  |
| knot (international)  |
| mi/h (U.S. statute)   |
| mi/min (U.S. statute) |
| mi/s (U.S. statute)   |
| mi/h (U.S. statute)   |

| centipoise                |
|---------------------------|
| centistokes               |
| ft <sup>2</sup> /s        |
| poise                     |
| poundal·s/ft <sup>2</sup> |
| lb/ft·s                   |
| lbf·s/ft <sup>2</sup>     |
| slug/ft·s                 |
| stoke                     |

| • |
|---|
| • |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

| meter per second (m/s) | 8.466 667 E-05 |
|------------------------|----------------|
| meter per second (m/s) | 5.080 000 E-03 |
| meter per second (m/s) | 3.048 000 E-01 |
| meter per second (m/s) | 2.540 000 E-02 |
| meter per second (m/s) | 2.777 778 E-01 |
| meter per second (m/s) | 5.144 444 E-01 |
| meter per second (m/s) | 4.470 400 E-01 |
| meter per second (m/s) | 2.682 240 E+01 |
| meter per second (m/s) | 1.609 344 E+03 |
| km/h                   | 1.609 344 E+00 |

#### VISCOSITY

| pascal-second (Pa·s)                              | 1.000 000 E-03 |
|---------------------------------------------------|----------------|
| meter <sup>2</sup> per second $(m^2/s)$           | 1.000 000 E-06 |
| meter <sup>2</sup> per second $(m^2/s)$           | 9.290 304 E-02 |
| pascal-second (Pa·s)                              | 1.000 000 E-01 |
| pascal-second (Pa·s)                              | 1.488 164 E+00 |
| pascal-second (Pa·s)                              | 1.488 164 E+00 |
| pascal-second (Pa·s)                              | 4.788 026 E+01 |
| pascal-second (Pa·s)                              | 4.788 026 E+01 |
| meter <sup>2</sup> per second (m <sup>2</sup> /s) | 1.000 000 E-04 |
|                                                   |                |

#### VOLUME (includes CAPACITY)

| meter <sup>3</sup> (m <sup>3</sup> ) | 1.233 489 E+03 |
|--------------------------------------|----------------|
| meter <sup>3</sup> (m <sup>3</sup> ) | 1.589 873 E-01 |
| meter <sup>3</sup> (m <sup>3</sup> ) | 2.359 737 E-03 |
| $meter^3 (m^3)$                      | 3.523 907 E-02 |
| $meter^3 (m^3)$                      | 2.365 882 E-04 |
| $meter^3 (m^3)$                      | 2.957 353 E-05 |
| $meter^3 (m^3)$                      | 2.831 685 E-02 |
| $meter^3 (m^3)$                      | 4.546 090 E-03 |
| $meter^3 (m^3)$                      | 4.546 092 E-03 |
| meter <sup>3</sup> (m <sup>3</sup> ) | 4.404 884 E-03 |
|                                      |                |

# multiply by

#### multiply by

| gallon (U.S. liquid) | $meter^{3}(m^{3})$                   | 3.785 412 E-03 |
|----------------------|--------------------------------------|----------------|
| inch <sup>3</sup>    | $meter^{3}(m^{3})$                   | 1.638 706 E-05 |
| liter                | $meter^{3}(m^{3})$                   | 1.000 000 E-03 |
| ounce (U.K. fluid)   | $meter^{3}(m^{3})$                   | 2.841 307 E-05 |
| ounce (U.S. fluid)   | $meter^{3}(m^{3})$                   | 2.957 353 E-05 |
| peck (U.S.)          | meter <sup>3</sup> (m <sup>3</sup> ) | 8.809 768 E-03 |
| pint (U.S. liquid)   | meter <sup>3</sup> (m <sup>3</sup> ) | 4.731 765 E-05 |
| quart (U.S. liquid)  | meter <sup>3</sup> (m <sup>3</sup> ) | 9.463 529 E-04 |
| tablespoon           | $meter^{3}(m^{3})$                   | 1.479 000 E-05 |
| teaspoon             | meter <sup>3</sup> (m <sup>3</sup> ) | 4.929 000 E-06 |
| ton (register)       | meter <sup>3</sup> (m <sup>3</sup> ) | 2.831 685 E+00 |
| yard <sup>3</sup>    | $meter^{3}(m^{3})$                   | 7.645 549 E-01 |
|                      |                                      |                |

VOLUME PER UNIT TIME (includes FLOW)

| ft <sup>3</sup> /min  | meter <sup>3</sup> | per second $(m^3/s)$           | 4.719 474 E-04 |
|-----------------------|--------------------|--------------------------------|----------------|
| ft <sup>3</sup> /s    | meter <sup>3</sup> | per second $(m^3/s)$           | 2.831 685 E-02 |
| in <sup>3</sup> /min  | meter <sup>3</sup> | per second $(m^3/s)$           | 2.731 177 E-07 |
| yd <sup>3</sup> /min  | meter <sup>3</sup> | per second $(m^3/s)$           | 1.274 258 E-02 |
| gal (U.S. liquid)/day | meter <sup>3</sup> | per second $(m^3/s)$           | 4.381 264 E-08 |
| gal (U.S. liquid)/min | meter <sup>3</sup> | per second (m <sup>3</sup> /s) | 6.309 020 E-05 |

WORK (see ENERGY)

Source: Selected excerpts from Metric Practice Guide, Designation: E 380 – 74 (1974), American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshocken, PA 19428-2959; updated with data from S110-02 IEEE/ASTM SI 10 American National Standard for Use of the International System of Units (SI): The Modern Metric System (2002), S110-02 IEEE/ASTM SI 10, 100 Barr Harbor Drive, West Conshocken, PA 19428-2959.

| A1.4 Magnetic units: Equivalency table | a |  |
|----------------------------------------|---|--|
|----------------------------------------|---|--|

| Symbol                  | Quantity                                     | Conversion from Gaussian and cgs emu to SI <sup>b</sup>                                                          |
|-------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Φ                       | magnetic flux                                | $1 \text{ Mx} = 1 \text{ G} \cdot \text{cm}^2 \rightarrow 10^{-8} \text{ Wb} = 10^{-8} \text{ V} \cdot \text{s}$ |
| В                       | magnetic flux density,<br>magnetic induction | $1 \text{ G} \rightarrow 10^{-4} \text{ T} = 10^{-4} \text{ Wb/m}^2$                                             |
| Н                       | magnetic field strength                      | $1 \text{ Oe} \to 10^3/(4\pi) \text{ A/m}$                                                                       |
| т                       | magnetic moment                              | $1 \text{ erg/G} = 1 \text{ emu} \rightarrow 10^{-3} \text{ A} \cdot \text{m}^2 = 10^{-3} \text{ J/T}$           |
| М                       | magnetization                                | $1 \text{ erg/(G \cdot cm^3)} = 1 \text{ emu/cm}^3 \rightarrow 10^3 \text{ A/m}$                                 |
| $4\pi M$                | magnetization                                | $1 \text{ G} \rightarrow 10^3/(4\pi) \text{ A/m}$                                                                |
| σ                       | mass magnetization, specific magnetization   | $1 \text{ erg/}(G \cdot g) = 1 \text{ emu/}g \rightarrow 1 \text{ A} \cdot \text{m}^2/\text{kg}$                 |
| j                       | magnetic dipole moment                       | $1 \text{ erg/G} = 1 \text{ emu} \rightarrow 4\pi \times 10^{-10} \text{ Wb} \cdot \text{m}$                     |
| J                       | magnetic polarization                        | $1 \text{ erg/(G \cdot cm^3)} = 1 \text{ emu/cm}^3 \rightarrow 4\pi \times 10^{-4} \text{ T}$                    |
| χ, κ                    | volume susceptibility <sup>c</sup>           | $1 \rightarrow 4\pi$                                                                                             |
| $\chi_{\rho},\chi/\rho$ | mass susceptibility <sup>d</sup>             | $1 \text{ cm}^3/\text{g} \rightarrow 4\pi \times 10^{-3} \text{ m}^3/\text{kg}$                                  |
| μ                       | permeability                                 | $1 \rightarrow 4\pi \times 10^{-7} \text{ H/m} = 4\pi \times 10^{-7} \text{ Wb/(A·m)}$                           |
| $\mu_{\rm r}$           | relative permeability                        | $\mu \to \mu_r$                                                                                                  |
| w, W                    | energy density                               | $1 \text{ erg/cm}^3 \rightarrow 10^{-1} \text{ J/m}^3$                                                           |
| N, D                    | demagnetizing factor                         | $1 \rightarrow 1/(4\pi)$                                                                                         |

<sup>a</sup> Table based on R. B. Goldfarb and F. R. Fickett (1985), NBS STP 696, National Bureau of Standards. U.S. Government Printing Office, Washington, D.C.

<sup>b</sup> Gaussian units are the same as cgs emu for magnetostatics; Mx = maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s = second, T = tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry.

<sup>c</sup> Volume susceptibility is dimensionless but is sometimes expressed in cgs units as emu/cm<sup>3</sup> or emu/(cm<sup>3</sup>·Oe).

<sup>d</sup> Mass susceptibility is sometimes expressed in cgs units as emu/g or emu/(g·Oe).

# A1.5 Properties of common cryogenic fluids. (Sec. 1.2)

Additional data on the vapor-pressure vs. temperature dependence of these cryogenic fluids are given in Appendix A5.1.

| Fluid:<br>Property:                                    | <sup>3</sup> He | <sup>4</sup> He     | H <sub>2</sub> *<br>(Para) | H <sub>2</sub> <sup>*</sup><br>(Normal) | Ne      | N <sub>2</sub> | Ar      | O <sub>2</sub> | CH <sub>4</sub><br>(Methane) |
|--------------------------------------------------------|-----------------|---------------------|----------------------------|-----------------------------------------|---------|----------------|---------|----------------|------------------------------|
| Molecular Weight                                       | 3.0160          | 4.0026              | 2.0159                     | 2.0159                                  | 20.179  | 28.013         | 39.948  | 31.999         | 16.043                       |
| Critical Temp. [K]                                     | 3.324           | 5.195               | 32.93                      | 33.18                                   | 44.49   | 126.2          | 150.7   | 154.6          | 190.6                        |
| Critical Pressure [atm]                                | 1.145           | 2.245               | 12.67                      | 12.98                                   | 26.44   | 33.51          | 47.99   | 49.77          | 45.39                        |
| Boiling Point [K]                                      | 3.191           | 4.230               | 20.27                      | 20.27                                   | 27.10   | 77.35          | 87.30   | 90.20          | 111.7                        |
| Melting Point [K]                                      |                 | 4.2<br>(at 140 atm) | 13.80                      | 13.95                                   | 24.56   | 63.15          | 83.81   | 54.36          | 90.72                        |
| Liquid Density at B.P.                                 | 0.05722         | 0.1247              | 0.07080                    | 0.07080                                 | 1.207   | 0.8061         | 1.395   | 1.141          | 0.4224                       |
| Gas Density at 0°C and                                 | 0.1345          | 0.1785              | 0.08988                    | 0.08988                                 | 0.8998  | 1.250          | 1.784   | 1.429          | 0.7175                       |
| Vapor Density at B.P.                                  | 24.51           | 16.76               | 1.339                      | 1.339                                   | 9.577   | 4.612          | 5.774   | 4.467          | 1.816                        |
| Liquid Thermal<br>Conductivity at B.P.                 |                 | 18.66               | 103.4                      | 103.4                                   | 155.0   | 145.8          | 125.6   | 151.6          | 183.9                        |
| [mW/(m•K)]<br>Liquid Isobaric Specific<br>Heat at B.P. | 24.80           | 5.299               | 9.659                      | 9.667                                   | 1.862   | 2.041          | 1.117   | 1.699          | 3.481                        |
| [J/(g•K)]<br>Latent Heat of                            | 7.976 J/g       | 20.75               | 445.4                      | 445.4                                   | 85.75   | 199.2          | 161.1   | 213.1          | 510.8                        |
| vaporization at B. P.                                  | (0.4564 J/mL)   | (2.589)             | (31.54)                    | (31.54)                                 | (103.5) | (160.6)        | (224.9) | (243.1)        | (215.8)                      |
| Latent heat of Fusion at M.P. [J/g]                    |                 | 30.5                | _                          | 58.2                                    | 16.6    | 25.5           | 27.8    | 13.8           | 58.7                         |

| Fluid:<br>Property:                                                | <sup>3</sup> He | <sup>4</sup> He | H <sub>2</sub> *<br>(Para) | H <sub>2</sub> <sup>*</sup><br>(Normal) | Ne             | N <sub>2</sub> | Ar              | O <sub>2</sub>                     | CH <sub>4</sub><br>(Methane) |
|--------------------------------------------------------------------|-----------------|-----------------|----------------------------|-----------------------------------------|----------------|----------------|-----------------|------------------------------------|------------------------------|
| Vap. Pres. of Solid at<br>M. P. [kPa]                              |                 |                 | 7.04                       | 7.20                                    | 43.46          | 12.52          | 68.89           | 0.146                              | 11.5                         |
| Magnetic Susceptibil-<br>ity $[10^{-6} \text{ cm}^3/\text{mol}]^a$ |                 | -2.02<br>(gas)  | -5.44<br>(liq.,            | $-3.99$ (gas, $\geq 202K$ )             | -6.96<br>(gas) | -12.0<br>(gas) | -19.32<br>(gas) | +3 449 (gas)<br>+7 699 (liq., 90K) | -17.4                        |
| $(+ \equiv paramagnetic)$                                          |                 |                 | 20.3K)                     | ≈ 293K)                                 |                |                |                 | $\pm 10200$ (sol., 54K)            |                              |

B.P.  $\equiv$  boiling point; M.P.  $\equiv$  melting point.

Principal source of data: E.W. Lemmon, NIST, evaluated from equations of state referenced in Appendix A5.1.

Data on solids:

V. Johnson (1960), NBS, Wright Air Development Div. (WADD) Technical Report 60-56, Part II. U.S. Government Printing Office, Washington, D.C. D. H. J. Goodall (1970), A.P.T. Division, Culham, Culham Science Center, Abingdon, Oxfordshire, UK.

K. Timmerhaus and T. Flynn (1989), Cryogenic Process Engineering, Plenum Press, New York.

\* Hydrogen can exist in two different molecular forms: higher-energy *ortho*hydrogen (nuclear spins aligned) and lower-energy *para*hydrogen (nuclear spins opposed). The equilibrium ratio is determined by temperature: at room temperature and above, hydrogen consists of about 25 % para and 75 % ortho (so-called *normal* hydrogen), but at the atmospheric boiling temperature of liquid hydrogen (20.27 K) and below, the equilibrium shifts almost completely to parahydrogen (99.79 % para and 0.21 % ortho at 20.27 K).

<sup>a</sup> CRC Handbook of Chemistry and Physics (2002), 83<sup>rd</sup> edition, CRC Press, Boca Raton, Florida.

# A1.6a Cooling power data for ${}^{4}He$ , $H_{2}$ , and $N_{2}$ (Sec. 1.2)

Cryogenic liquid Volume of liquid boiled off Flow of gas at 0°C, 1 atm Enthalpy change at 1 atm from 1 W from 1 W pressure [L/h] [L/min] [J/g]<sup>4</sup>He 1.377 16.05 87 (4.2 K-20 K) 384 (4.2 K-77 K) 1542 (4.2 K-300 K) 590 (20 K-77 K) 1.505  $H_2$ 0.1145 3490 (20 K-300 K)  $N_2$ 0.0225 0.243 233.5 (77 K-300 K)

Tabulated values are consumption rates resulting from 1 W dissipated directly in the indicated cryogenic liquid at atmospheric pressure.

Data compiled from:

V. Johnson (1960), NBS, Wright Air Development Div. (WADD) Technical Report 60-56, Part II, U.S. Government Printing Office, Washington, D.C.

D. H. J. Goodall (1970), A.P.T. Division, Culham Science Center, Abingdon, Oxfordshire, UK.

|                       | <sup>4</sup> H   | le          | H                | N <sub>2</sub>                 |              |      |
|-----------------------|------------------|-------------|------------------|--------------------------------|--------------|------|
|                       | $(T_{\rm b} = 4$ | 4.2 K)      | $(T_{\rm b} = 2$ | $(T_{\rm b} = 77.3 \text{ K})$ |              |      |
| Ir                    | <u>300 K</u>     | <u>77 K</u> | <u>300 K</u>     | <u>77 K</u>                    | <u>300 K</u> |      |
|                       | [L/kg]           | [L/kg]      | [L/kg]           | [L/kg]                         | [L/kg]       |      |
| Using the latent heat | Aluminum         | 58          | 2.6              | 5.4                            | 0.25         | 1.01 |
| of vaporization only  | Copper           | 27          | 1.8              | 2.4                            | 0.17         | 0.46 |
|                       | Stainless Steel  | 30          | 1.2              | 2.8                            | 0.12         | 0.54 |
| Using both the latent | Aluminum         | 1.60        | 0.22             | 1.03                           | 0.14         | 0.64 |
| heat and the enthalpy | Copper           | 0.80        | 0.15             | 0.51                           | 0.092        | 0.29 |
| of the gas            | Stainless Steel  | 0.80        | 0.10             | 0.52                           | 0.064        | 0.34 |

A1.6b Cooling power data: Amount of cryogenic fluid needed to cool common metals  $^{a,b}$  (Sec. 1.2)

 $T_{\rm b}$  is the boiling temperature at atmospheric pressure.

<sup>a</sup> Determined from data by J. B. Jacobs (1962), Adv. Cryog. Eng. 8, 529.

<sup>b</sup> For temperature combinations other than those given in this table, see Jacobs (1962, reference above).

# A1.7 Suppliers of specialty parts and materials

The following is a list of suppliers of specialty parts and materials for constructing measurement cryostats. It is provided as a convenience to save time locating less-common items. These are not complete listings of suppliers and information can change over time, but at least they are a place to start. They may also serve as points of reference if contact information has changed.

Updated supplier information is listed for *cryogenic* instrumentation annually each December in the *Cold Facts Buyer's Guide*, Cryogenic Society of America, <u>http://www.cryogenicsociety.org/</u>. Suppliers for *general physics* instrumentation are updated each August in the *Physics Today Buyers Guide*, American Institute of Physics, <u>http://www.physicstoday.org/guide/</u>.

Trade names, products, and companies cited here do not constitute or imply endorsement by NIST or by the U. S. government, and do not imply that they are the best available for the purpose.

# Adhesives (see Appendix A3.10)

# Coaxial cables for cryogenic applications (Secs. 4.7.1, 4.8)

*Solid dielectric* coaxial cables for lower frequency applications (< 1 GHz) where dimensional stability of the terminations on thermal cycling is not needed (see Sec. 4.8):

- Axon Cable Inc., 390 E. Higgins Rd., Suite 101, Elk Grove Village, IL 60007, Tel. 708-806-6629, Fax. 708-806-6639, <u>http://www.axon-cable.com/</u>. Supplier of miniature coaxial cable; stock number SM50 comes standard with Teflon<sup>TM</sup> dielectric and jacket; PXC47K08 can also be supplied with a Teflon<sup>TM</sup> jacket.
- Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, <u>http://www.lakeshore.com/</u>.
- Micro-Coax, 206 Jones Blvd., Pottstown, PA 19464-3465, Tel. 610-495-0110, 800-223-2629, Fax. 610-495-6656, <u>http://www.micro-coax.com/</u>.

Oxford Instruments–Cryospares, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/cryospares/</u>.

Precision Tube, Coaxitube Div., 620 Naylor Mill Road, Salisbury, MD 21801, Tel. 410-546-3911, Fax. 410-546-3913, <u>http://www.precisiontube.com/</u>. Catalog contains helpful information on the electrical selection of coaxial cables.

RS, United Kingdom, Tel. +44-1536-201201, Fax. +44-1536-201-501, <u>http://www.rs-components.com</u>. Supplier of miniature coaxial cable with Teflon<sup>™</sup> dielectric and jacket; "RF cable MCX" stock numbers: 388-530 (50 Ω), 388-546 (75 Ω).; (for low frequencies, where impedance matching is not a concern, the 75 Ω might be better since the capacitance is a bit lower). Storm Products Co., Microwave Sales Office, 10221 Werch Drive, Woodridge, IL 60517, Tel. 630-754-3300, 888-347-8676, Fax. 630–754-3500, http://www.stormproducts.com/.

*Expanded dielectric* coaxial cables for higher frequency applications (> 1 GHz) where dimensional stability of the terminations on thermal cycling is needed (see Sec. 4.8):

Storm Products Co., Microwave Sales Office, 10221 Werch Drive, Woodridge, IL 60517, Tel. 630-754-3300, 888-347-8676, Fax. 630–754-3500, <u>http://www.stormproducts.com/;</u> expanded dielectric coaxial cables, for example cable #421-193.

# Connectors (Secs. 4.1, 4.6, 4.7, 4.8)

Alligator clips: smooth, flat jaws; 7/32" jaw opening, #20 wire or smaller; crimp connection: Mueller Electric Co., part number (PN) BU-34C, <u>http://www.muellerelectric.com/</u> (distributed by Allied Electronics, Inc., PN 860-4340, Tel. 800-433-5700, <u>http://www.alliedelec.com/</u> or Newark Electronics, PN 28F497, Tel. 800-263-9275, http://www.newark.com/.

# Rf connectors:

Fischer Connectors, Tel. 1-800-551-0121, http://www.fischerconnectors.com/

Lemo Connectors, http://www.lemousa.com/.

Vacuum lead-throughs (room temperature):

Cerama-Seal, 1033 State Route 20, New Lebanon, NY 12125, Tel. 10518-794-7800, Fax 518-794-8080, <u>http://www.ceramaseal.com/</u>.

Detoronics Corp., 10660 East Rush St., So. El Monte, CA 91733-3432, Tel. 818-579-7130, Fax 818-579-1936, <u>http://www.detoronics.com/</u>.

# Contacts (springy devices) (Sec. 7.4.3)

Beryllium–copper clad circuit board for making microsprings: Specialty order from Q-Flex, 1220 S. Lyon St., Santa Ana, CA 92705, Tel. 714-835-2868, Fax. 714-835-4772, http://www.q-flex.com/.

# Fuzz Buttons:

Techknit, Cranford, NJ, http://www.fuzzbuttons.com/.

# Pogo Pins:

Emulation Technology, Inc., Santa Clara, CA, http://www.emulation.com/pogo/.

# Cryogenic accessories and consumables

Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, <u>http://www.lakeshore.com/</u>.

Oxford Instruments–Cryospares, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/cryospares/</u>.

# Cryogenic measurement systems – Complete (Sec. 1.4)

Cryo Industries; 11124 S. Willow St., Manchester, NH 03103; Tel. 603-621-9957; cryo@cryoindustries.com; <u>http://www.cryoindustries.com/</u>.

- Janis Research Co.; 2 Jewel Dr. P. O. Box 696, Wilmington, MA 01887-0696; Tel. 978-657-8750, <u>http://www.janis.com/</u>.
- Oxford Instruments, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/</u>.

Precision Cryogenic Systems, Inc.; 1171 West Rockville Rd., Indianapolis, Indiana 46234; Tel. 317-272-0880, <u>http://www.precisioncryo.com/</u>.

Quantum Design; 6325 Lusk Glvd., San Diego, CA 92121–3733; Tel. 858-481-4400, Fax. 858-481-7410, <u>http://www.qduse.com/</u>.

# Current leads (Secs. 4.9, 4.10)

Flexible superconducting braid:

Supercon Inc., 830 Boston Turnpike, Shrewsbury, MA 01545, <u>http://www.supercon-wire.com/</u> (by special order).

Low- $T_c$  and high- $T_c$  superconductors – see Superconducting wire

Vapor-cooled leads:

American Magnetics Inc., P.O. Box 2509, 112 Flint Road, Oak Ridge, TN 37831-2509, USA, <u>http://www.americanmagnetics.com/</u>.

Cryomagnetics Inc., 1006 Alvin Weinberg Drive, Oak Ridge, TN 37830, USA, <u>http://www.cryomagnetics.com/</u>.

# Current power supplies; low-ripple, series-transistor regulated (Sec. 9.2)

 Alpha Scientific Electronics, Hayward, CA, 510-782-4747, <u>http://www.alphascientific.com/</u>.
 Inverpower Controls Ltd., Burlington, Ontario, Canada, 905-639-4692, <u>http://www.inverpower.com/</u>.
 Walker LDJ Scientific Inc., Worcester, MA 01606, 508-852-3674,

<u>http://www.walkerscientific.com/</u> (current  $\leq$  500 A).

# Dewars for measurement systems-metal and fiberglass-epoxy

American Magnetics Inc., P.O. Box 2509, 112 Flint Road, Oak Ridge, TN 37831-2509, USA, <u>http://www.americanmagnetics.com/</u>.

Cryomagnetics Inc., 1006 Alvin Weinberg Drive, Oak Ridge, TN 37830, USA, <u>http://www.cryomagnetics.com/</u>.

International Cryogenics, 4040 Championship Drive, Indianapolis, IN 46268, Tel. 317-297-4777, Fax. 317-297-7988, <u>http://www.intlcryo.com/</u>.

Oxford Instruments, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/</u>.

Precision Cryogenic Systems, Inc., 7804 Rockville Road, Indianapolis, Indiana 46214, Tel. 317–273-2800, Fax. 317-273-2802, prcry@iquest.net, http://www.precisioncryo.com/.

Tristan Technologies, Inc., 6185 Cornerstone Court East, Suite 106, San Diego, CA 92121, Tel. 877-436-1389, <u>http://www.tristantech.com/</u>.

# Epoxies and pastes -- Conductive (Secs. 7.4.1 and 8.3.2)

Silver-based epoxy:

Ted Pella, Inc., P.O. Box 492477, Redding, CA 96049-2477, Tel. 800-237-3526; Fax. 530-243-3761, <u>http://www.TedPella.com/</u>.

# Silver paste:

Ted Pella, Inc., P.O. Box 492477, Redding, CA 96049-2477, Tel. 800-237-3526; Fax. 530-243-3761, <u>http://www.TedPella.com/</u>.

# Heaters, thin film (Secs. 1.4, 5.4, 7.3.1, and 7.4.1)

Minco Products, Inc., 7300 Commerce Lane, Minneapolis, MN 55432-3177, Tel. 763-571-3121, Fax. 763-571-0927, Info@minco.com, <u>http://www.minco.com/</u>.

# Liquid-level monitors (Sec. 1.6.2)

Janis Research Co.; 2 Jewel Dr. P. O. Box 696, Wilmington, MA 01887-0696; Tel. 978-657-8750, <u>http://www.janis.com/</u>.

Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, <u>http://www.lakeshore.com/</u>.

Oxford Instruments, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/</u>.

# Lubricants (see Appendix A3.11)

# Magnets, superconducting (Secs. 1.4, 1.5, 9.1.4, 9.2.1)

American Magnetics Inc., P.O. Box 2509, 112 Flint Road, Oak Ridge, TN 37831-2509, USA, <u>http://www.americanmagnetics.com/</u>.

American Superconductor Corp., Two Technology Dr., Westborough, MA 01581, Tel. 508-836-4200, Fax. 508-836-4248, <u>http://www.amsuper.com/</u> (high-T<sub>c</sub> magnets).
Cryomagnetics Inc., 1006 Alvin Weinberg Drive, Oak Ridge, TN 37830, http://www.cryomagnetics.com/.

Oxford Instruments, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/</u>.

SuperPower, Inc., 450 Duane Ave., Schenectady, NY 12304, Tel. 518-346-1414, Fax. 518-346-6080, <u>http://www.igc.com/superpower/</u> (high-*T*<sub>c</sub> magnets).

# Materials, less common and specialty sizes (Secs. 3.2, 3.4, 6.5.2, 7.3, 7.4)

Metals – general supplier of high purity metals and metallic compounds: ESPI, 1050 Benson Way, Ashland, OR 97520, Tel. 800-638-2581, Fax. 800-488-0060, <u>http://www.espimetals.com/</u>. Aluminum – high conductivity wires:

Alcoa Technical Center, 100 Technical Drive, Alcoa Center, PA 15069, http://www.alcoa.com/

Sumitomo Chemical, Japan, http://www.sumitomo-chem.co.jp/english/

Swiss Federal Institute of Technology, Zurich, Switzerland, Tel. +41 44 632 1111, Fax. +41 44 632 1010, http://www.ethz.ch

Copper – high conductivity, oxygen free; (see Appendix A3.1 for a listing of the various types): Copper & Brass Sales, Tel. 800-926-2600, Fax. 888-926-2600,

<u>http://www.copperandbrass.com/</u> (OFHC<sup>TM</sup> copper tubes).

Farmer's Copper & Industrial Supply 800-231-9450, Fax. 409-765-7115,

<u>http://www.farmerscopper.com/</u> (OFHC<sup>™</sup> copper tubes).

McMaster-Carr, http://www.mcmaster.com/.

Fiberglass-epoxy composite tubes; custom sizes (made from G-10, G-11, G-13):

A & M Composites, P.O. Box 3281, Big Spring, TX 79721, Tel. 432-267-6525, Fax. 432-267-6599, <u>http://www.amcctx.com/</u>.

Microwave circuit board (TMM<sup>™</sup>) (with a thermal-expansion coefficient less than that of G-10 circuit board, so as to give better dimensional stability):

Rogers Corp., One Technology Dr., P.O. Box 188, Rogers, CT 06263-0188, Tel. 860-774-9605, Fax. 860-779-5509, <u>http://www.rogers-corp.com/</u>.

Titanium tubes – less common sizes:

Titanium Sports Technologies (TST), 1426 E. Third Ave., Kennewick, WA 99336, Tel. 509-586-6117, <u>http://www.titaniumsports.com/</u>.

# Mechanical actuators and linear motors (Sec. 3.6)

Energen, Inc., 650 Suffolk St., Lowell, MA 01854, http://www.energeninc.com/index.htm.

Soldering materials (Secs. 3.3.4, 4.5, 4.6, 8.3.2, 8.3.3) Indium-alloy solders: Indium Corp. of America, Indalloy<sup>®</sup> solders, Tel. 315-853-4900 or 800-4-INDIUM, askus@indium.com, http://www.indium.com/.

Lake Shore Cryotronics, Ostalloy<sup>®</sup> solders, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, http://www.lakeshore.com/.

<u>Umicore Indium Products</u>, Ostalloy<sup>®</sup> solders, <u>http://www.thinfilmproducts.umicore.com/.</u> Solder flux:

• Combined solder and flux paste:

Fusion Automation, Inc., <u>http://www.fusion-inc.com/</u> Model SSX-430-830. Multicore Kester 135, <u>http://www.kester.com/</u>.

• Mild flux:

Alpha HF260, <u>http://www.alphametals.com/distributors/pdfs/2001134214.pdf</u>. Litton ESF33, <u>http://www.amsuper.com/products/library/003-</u> TechNote Soldering.pdf.

• Unactivated rosin flux:

Kester, Tel. 800-253-7837, Fax. 847-390-9338, technicalservice@kester.com, <u>http://www.kester.com/</u> designated "Plastic core" RNA (rosin nonactivated).

Solder with antimony to minimize embrittlement and cracking at cryogenic temperatures: Kester, Tel. 800-253-7837, Fax. 847-390-9338, technicalservice@kester.com, <u>http://www.kester.com/</u>.

# Strain gauges, accessories, and gauge adhesives for cryogenic service (Sec. 9.4.4)

Vishay Intertechnology, Inc., Vishay Micro-Measurements Division, <u>http://www.vishay.com/</u>.

Sticky stuff: (see Appendix A3.10)

# Superconducting wire (Secs. 4.9, 4.10, Chapters 9 and 10)

Updated links to superconductor suppliers are available at <u>http://superconductors.org/Links.htm.</u> Low- $T_c$  (Nb–Ti and Nb<sub>3</sub>Sn):

Alstom Magnets & Superconductors, 90018 Belfort Cedex, France, Tel. +33 (0)3 84 55 32 26, Fax. +33 (0)3 84 55 70 93, <u>http://www.powerconv.alstom.com/</u>.

Bochvar, 5 ulitsa Rogova, Moscow 123060, Tel. (095) 190-49-93[1], 190-82-97[2], Fax. (095) 196-41-68, e-mail: post@bochvar.ru, <u>http://www.bochvar.ru</u>.

European Advanced Superconductor (EAS), Ehrichstraße 10, 63450 Hanau, Germany, Tel. (+49) (6181) 43 84-41 00, Fax. (+49) (6181) 43 84-44 00, http://www.advancedsupercon.com/.

Furukawa Electric, 6-1, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100, Japan, Tel. 81-3-3286-3001, Fax. 81-3-3286-3747,3748, http://www.furukawa.co.jp/english.

Kobe Steel, Ltd., Shinko Building, 10-26, Wakinohamacho, 2-chome, Chuo-ku, Kobe, Hyogo 651-8585, Japan, Tel. 81-78-261-511, Fax. 81-78-261-4123, http://www.kobelco.co.jp/english.

Outokumpu, http://www.outokumpu.com/.

- Oxford Superconducting Technology, 600 Milik St., P.O. Box 429, Carteret, NJ 07008-0429, Tel. 732 541 1300, Fax. 732 541 7769, <u>http://www.oxfordinstruments.com/</u>.
- Shape Metal Innovations (SMI); Nb<sub>3</sub>Sn powder-in-tube (PIT) process, Tel. +31 53 4340704, JLSMI@worldonline.nl.
- Sumitomo, One North Lexington Ave., White Plains, NY 10601, Tel. 914-467-6001, Fax. 914-467-6081, <u>http://www.sumitomoelectricusa.com/</u>.
- Supercon Inc., 830 Boston Turnpike, Shrewsbury, MA 01545, <u>http://www.supercon-wire.com/</u>.
- Western Superconducting Material Technology Corp., P.O. Box 51 Xi'an Shaanxi, 710016 P.R. China.

# Low- $T_c$ (MgB<sub>2</sub>):

Columbus Superconductor S.R.L., Corso F. Perrone 24, 16152 Genova, Italy, Tel. +39 (0)10 65 98 784, Fax. +39 (0)10 65 98 732.

Diboride Conductors, http://www.diboride.biz/.

Hyper Tech Research, Inc., 110 E. Canal St., Troy, OH 45373-3581, Tel. 937-332-0348, http://www.hypertechresearch.com/.

# High-*T*<sub>c</sub> (Bi-2212):

Oxford Superconducting Technology, 600 Milik St., P.O. Box 429, Carteret, NJ 07008-0429, Tel. 732 541 1300, Fax. 732 541 7769, <u>http://www.oxfordinstruments.com/</u>.

Showa Electric Wire and Cable Co., Ltd., http://www.swcc.co.jp/eng/index.htm.

# High-*T*<sub>c</sub> (Bi-2223):

- American Superconductor Corp., Two Technology Drive, Westborough, MA 01581, Tel. 508.836.4200, Fax. 508.836.4248, <u>http://www.amsuper.com/</u>.
- European Advanced Superconductor (EAS), Ehrichstraße 10, 63450 Hanau, Germany, Tel. (+49) (6181) 43 84-41 00, Fax. (+49) (6181) 43 84-44 00, http://www.advancedsupercon.com/.
- Innova Superconductor Technology Co. Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing 100176, People's Republic of China.
- Sumitomo, One North Lexington Ave., White Plains, NY 10601, Tel. 914-467-6001, Fax. 914-467-6081, <u>http://www.sumitomoelectricusa.com/</u>.
- Trithor GmbH, Heisenbergstrasse 16, D-53359 Rheinbach, Germany, Tel.: +49 (0) 2226 90 60 0, Fax. +49 (0) 2226 90 60 900, <u>http://www.trithor.com/</u>.

High-*T*<sub>c</sub> (YBCO):
Fujikura, http://www.fujikura.co.jp/ie\_e.html.

- SuperPower, 450 Duane Avenue, Schenectady, NY 12304, Tel.: 518/346-1414, Fax. 518/346-6080, http://www.igc.com/superpower/.
- Theva GmbH, Rote-Kreuz-Str. 8, D-85737 Ismaning Germany, Tel. +49 89 923346-0, Fax. +49 89 923346-10, info@theva.com, http://www.theva.com/.

## Thermometers and accessories (Chapter 5)

Beryllium-oxide high-thermal-conductivity chips:

Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, http://www.lakeshore.com/.

Capacitance bridges:

- Automatic bridges—Andeen–Hagerling Inc., Cleveland, OH, Tel. 440-349-0370, Fax. 440-349-0359, <u>http://www.andeen-hagerling.com/</u>.
- Capacitance controller card—Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, <u>http://www.lakeshore.com/</u>.
- General Radio capacitance bridges (5 digit) available from IET Labs Inc., Westbury, NY, Tel. 800-899-8438, Fax. 516-334-5988, <u>http://www.ietlabs.com/</u> or Tucker Electronics, Dallas TX, Tel. 800-527-4642, Fax. 214-348-0367, <u>http://www.tucker.com/</u>.

## Grease – thermally conducting:

- Apiezon N<sup>™</sup> grease Apiezon Products, M & I Materials Ltd., Manchester, UK, Tel. +44 (0)161 864 5419, Fax. +44 (0)161 864 5444, <u>http://www.apiezon.com/</u>.
- Cry-Con<sup>™</sup> grease available, for example, from Janis Research Co., Accessories and Ancillary Equipment, <u>http://www.janis.com/</u>.

Thermometers for cryogenic temperatures and calibration services:

- Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, http://www.lakeshore.com/.
- Oxford Instruments–Cryospares, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/cryospares/</u>.
- Scientific Instruments, Inc., West Palm Beach FL 33407, Tel. 561-881-8500, Fax. 561-881-8556, <u>http://www.scientificinstruments.com/</u>.

Tinsley Manufacturing, supplier of rhodium–iron resistance thermometers in wire form. Temperature controllers:

- Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, http://www.lakeshore.com/.
- Oxford Instruments, Witney, Oxfordshire, UK OX294TL, Tel. +44(0)1865 881437, Fax. +44(0)1865 884045, <u>http://www.oxinst.com/</u>.

## Thermocouple wire (Secs. 5.1.1, 5.1.2, 5.1.4, 5.1.6, and 5.5.9)

Omega Engineering, P.O. Box 4047, Stamford, Connecticut 06907-0047, 800-848-4286 or 203-359-1660, Fax. 203-359-7700, <u>http://www.omega.com/</u>.
River Bend Technology Centre, Northbank, Irlam, Manchester M44 5BD, United Kingdom, <u>http://www.omega.co.uk/</u>.

#### Vacuum accessories (Secs. 3.3.1, 3.7)

| C-ring metal seals:                                                                              |
|--------------------------------------------------------------------------------------------------|
| American Seal & Engineering Co., P.O. Box 1038, Orange, CT 06477, 800-878-2442,                  |
| http://www.ameriseal.com.                                                                        |
| Garlock-Helicoflex, P.O. Box 9889, Columbia, SC 20290, Tel. 800-713-1880,                        |
| http://www.helicoflex.com.                                                                       |
| Hydrodyne, 325 Damon Way, Burbank, CA 91505, Tel. 818-841-9667,                                  |
| http://www.hydrodyne.com.                                                                        |
| Nicholsons Sealing Technologies Ltd., Hamsterley, Newcastle upon Tyne, UK, NE17 7                |
| SX, Tel. +44 (0)1207 560505, http://www.nicholsons.com.                                          |
| Dynamic seals: O-rings, spring-loaded PTFE:                                                      |
| Bal Seal Engineering Co., Inc., 620 West Ave., Santa Ana, CA 92707-3398, Tel. 714-<br>557-5192.  |
| Vacuum flanges and fixtures: Ladish Tri-Clover, and ISO KF; available from general vacuum-       |
| equipment suppliers such as:                                                                     |
| Duniway Stockroom Corp., Tel. 800-446-8811, http://www.duniway.com/.                             |
| Kurt J. Lesker Co., Tel. 800-245-1656, http://www.lesker.com/.                                   |
| O-rings, indium wire:                                                                            |
| Indium Corp. of America, 1676 Lincoln Ave., Utica, NY. 13503.                                    |
| O-rings, metal:                                                                                  |
| Perkin Elmer, Beltsville, MD, Tel. 301-937-4010.                                                 |
| Screws (silver plated to prevent galling, precleaned, and optionally vented for vacuum systems): |
| McMaster–Carr, <u>http://www.mcmaster.com/</u> .                                                 |
| U-C Components, Morgan Hill, CA, <u>http://www.uc-components.com/</u> .                          |
| Wire (Sec. 4.1, 4.2, and 4.3)                                                                    |
| Phosphor-bronze twisted-wire pairs for thermometer leads:                                        |
| Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600,             |
| http://www.lakeshore.com/ Quad-Twist <sup>TM</sup> cryogenic wire.                               |
| Pure indium wire for indium O-rings:                                                             |
| Indium Corp. of America, Tel. 315-853-4900 or 800-4-INDIUM, askus@indium.com,                    |
| http://www.indium.com/.                                                                          |
| Stripper (chemical) for polyimide (Kapton <sup>™</sup> ) wire insulation:                        |
|                                                                                                  |

Miller–Stephenson chemical, George Washington Hwy., Danbury, CT 06810, Tel. 203-743-4447, Fax. 203-791-8702, support@miller-stephenson.com, MS-111 stripping agent.

#### A2. Heat-transfer (ref. Chapter 2)

*A2.1* Thermal conductivity integrals for technical cryostat materials<sup>*a*</sup> (see also Fig. 2.1 in Sec. 2.2)

The thermal conductivity integrals tabulated below are referenced to 4 K. Steady-state

heat conduction  $\dot{q}_{cond}$  through a solid member of uniform cross section A and length L may be determined between two arbitrary temperatures  $T_1$  and  $T_2$  by taking the difference between the two corresponding 4 K integral values:

$$\dot{q}_{\rm cond} \equiv A/L \int_{TI}^{T2} \lambda(T) \, dT = A/L \{ \int_{4K}^{T2} \lambda(T) \, dT - \int_{4K}^{TI} \lambda(T) \, dT \},$$

where  $\lambda(T)$  is the temperature-dependent thermal conductivity.

Data for materials other than those tabulated may be estimated well enough for cryostatdesign purposes by using data for similar materials, especially if they have a low thermal conductivity and do not contribute much to the total heat influx. For example, most commercial glasses, as well as many plastics and disordered polymers can be represented (within a factor of about two) by the integral values given for Pyrex<sup>™</sup>. Values for Manganin can be approximated by those given for Constantan, and values for Inconel and Monel alloys are between those of stainless steel and Constantan.

Greater care must be given to the highly conducting materials. Phosphorus deoxidized copper is the type of copper used most often in pipe, rods, and bars. Electrolytic tough pitch copper is the material from which copper electrical wires are usually made.

The temperature dependence of the thermal conductivity of additional cryostat construction materials is given in Appendix A6.7.

# Thermal Conductivity Integrals

|      | $\int_{4K}^{T} \lambda  \mathrm{d}T  [\mathrm{kW/m}]$ |                |                        |                                          |                                           |                                           |                                         |                                          |                 |                                                               | [W/m]   |                       |                    |  |  |
|------|-------------------------------------------------------|----------------|------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------|-----------------|---------------------------------------------------------------|---------|-----------------------|--------------------|--|--|
|      | COI                                                   | PPER           | COPPER                 | ALLOYS                                   |                                           | ALUMINUM                                  |                                         |                                          | CONST-<br>ANTAN | GLASS                                                         |         | POLYMERS              |                    |  |  |
| T(K) | Elect.<br>Tough<br>Pitch <sup>b</sup>                 | Phos.<br>Deox. | Be/Cu<br>98 Cu<br>2 Be | German<br>Silver<br>60 Cu 25<br>Zn 15 Ni | Com-<br>mon<br>Pure<br>99 Al <sup>b</sup> | Mn/Al<br>98.5 Al<br>1.2 Mn<br>plus traces | Mg/Al<br>96 Al<br>3.5 Mg<br>plus traces | Average<br>Types<br>303,304,<br>316, 347 |                 | Average<br>Pyrex <sup>TM</sup><br>Quartz<br>Boro-<br>Silicate | Teflon™ | Perspex <sup>TM</sup> | Nylon <sup>™</sup> |  |  |
| 6    | 0.80                                                  | 0.0176         | 0.0047                 | 0.00196                                  | 0.138                                     | 0.0275                                    | 0.0103                                  | 0.00063                                  | 0.0024          | 0.211                                                         | 0.113   | 0.118                 | 0.0321             |  |  |
| 8    | 1.91                                                  | 0.0437         | 0.0113                 | 0.00524                                  | 0.342                                     | 0.0670                                    | 0.025                                   | 0.00159                                  | 0.0066          | 0.443                                                         | 0.262   | 0.238                 | 0.0807             |  |  |
| 10   | 3.32                                                  | 0.0785         | 0.0189                 | 0.010                                    | 0.607                                     | 0.117                                     | 0.0443                                  | 0.00293                                  | 0.0128          | 0.681                                                         | 0.44    | 0.359                 | 0.148              |  |  |
| 15   | 8.02                                                  | 0.208          | 0.0499                 | 0.030                                    | 1.52                                      | 0.290                                     | 0.112                                   | 0.00816                                  | 0.0375          | 1.31                                                          | 0.985   | 0.669                 | 0.410              |  |  |
| 20   | 14.0                                                  | 0.395          | 0.0954                 | 0.0613                                   | 2.76                                      | 0.534                                     | 0.210                                   | 0.0163                                   | 0.0753          | 2.00                                                          | 1.64    | 1.01                  | 0.823              |  |  |
| 25   | 20.8                                                  | 0.635          | 0.155                  | 0.102                                    | 4.24                                      | 0.850                                     | 0.338                                   | 0.0277                                   | 0.124           | 2.79                                                          | 2.39    | 1.44                  | 1.39               |  |  |
| 30   | 27.8                                                  | 0.925          | 0.229                  | 0.153                                    | 5.92                                      | 1.23                                      | 0.490                                   | 0.0424                                   | 0.181           | 3.68                                                          | 3.23    | 1.96                  | 2.08               |  |  |
| 35   | 34.5                                                  | 1.26           | 0.316                  | 0.211                                    | 7.73                                      | 1.67                                      | 0.668                                   | 0.0607                                   | 0.244           | 4.71                                                          | 4.13    | 2.59                  | 2.90               |  |  |
| 40   | 40.6                                                  | 1.64           | 0.415                  | 0.275                                    | 9.62                                      | 2.17                                      | 0.770                                   | 0.0824                                   | 0.312           | 5.86                                                          | 5.08    | 3.30                  | 3.85               |  |  |
| 50   | 50.8                                                  | 2.53           | 0.650                  | 0.415                                    | 13.4                                      | 3.30                                      | 1.24                                    | 0.135                                    | 0.457           | 8.46                                                          | 7.16    | 4.95                  | 6.04               |  |  |
| 60   | 58.7                                                  | 3.55           | 0.930                  | 0.568                                    | 17.0                                      | 4.55                                      | 1.79                                    | 0.198                                    | 0.612           | 11.5                                                          | 9.36    | 6.83                  | 8.59               |  |  |
| 70   | 65.1                                                  | 4.68           | 1.25                   | 0.728                                    | 20.2                                      | 5.89                                      | 2.42                                    | 0.270                                    | 0.775           | 15.1                                                          | 11.6    | 8.85                  | 11.3               |  |  |
| 76   | 68.6                                                  | 5.39           | 1.46                   | 0.826                                    | 22.0                                      | 6.72                                      | 2.82                                    | 0.317                                    | 0.875           | 17.5                                                          | 13.0    | 10.1                  | 13.1               |  |  |
| 80   | 70.7                                                  | 5.89           | 1.60                   | 0.893                                    | 23.2                                      | 7.28                                      | 3.09                                    | 0.349                                    | 0.943           | 19.4                                                          | 13.9    | 11.0                  | 14.2               |  |  |
| 90   | 75.6                                                  | 7.20           | 1.99                   | 1.060                                    | 25.8                                      | 8.71                                      | 3.82                                    | 0.436                                    | 1.11            | 24.0                                                          | 16.3    | 13.2                  | 17.3               |  |  |
| 100  | 80.2                                                  | 8.58           | 2.40                   | 1.23                                     | 28.4                                      | 10.2                                      | 4.59                                    | 0.528                                    | 1.28            | 29.2                                                          | 18.7    | 15.5                  | 20.4               |  |  |
| 120  | 89.1                                                  | 11.5           | 3.30                   | 1.57                                     | 33.0                                      | 13.2                                      | 6.27                                    | 0.726                                    | 1.62            | 40.8                                                          | 23.7    | 20.0                  | 26.9               |  |  |

|      |                                       |                |                        | $\int_{4\mathbf{K}}^{T}$                 | $\lambda dT$                              | [kW/m]                                    |                                         |                                          |                 | [W/m]                                                         |         |                       |                     |  |
|------|---------------------------------------|----------------|------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------|-----------------|---------------------------------------------------------------|---------|-----------------------|---------------------|--|
|      | COP                                   | PPER           | COPPER                 | R ALLOYS                                 |                                           | ALUMINU                                   | М                                       | STAINLESS<br>STEEL                       | CONST-<br>ANTAN | GLASS                                                         |         |                       |                     |  |
| T(K) | Elect.<br>Tough<br>Pitch <sup>b</sup> | Phos.<br>Deox. | Be/Cu<br>98 Cu<br>2 Be | German<br>Silver<br>60 Cu 25<br>Zn 15 Ni | Com-<br>mon<br>Pure<br>99 Al <sup>b</sup> | Mn/Al<br>98.5 Al<br>1.2 Mn<br>plus traces | Mg/Al<br>96 Al<br>3.5 Mg<br>plus traces | Average<br>Types<br>303,304,<br>316, 347 |                 | Average<br>Pyrex <sup>TM</sup><br>Quartz<br>Boro-<br>Silicate | Teflon™ | Perspex <sup>TM</sup> | Nylon <sup>TM</sup> |  |
| 140  | 97.6                                  | 14.6           | 4.32                   | 1.92                                     | 37.6                                      | 16.2                                      | 8.11                                    | 0.939                                    | 1.97            | 54.2                                                          | 28.7    | 24.7                  | 33.6                |  |
| 160  | 106                                   | 18.0           | 5.44                   | 2.29                                     | 42.0                                      | 19.4                                      | 10.1                                    | 1.17                                     | 2.32            | 69.4                                                          | 33.8    | 29.4                  | 40.5                |  |
| 180  | 114                                   | 21.5           | 6.64                   | 2.66                                     | 46.4                                      | 22.5                                      | 12.2                                    | 1.41                                     | 2.69            | 85.8                                                          | 39.0    | 34.2                  | 47.5                |  |
| 200  | 122                                   | 25.3           | 7.91                   | 3.06                                     | 50.8                                      | 25.7                                      | 14.4                                    | 1.66                                     | 3.06            | 103.0                                                         | 44.2    | 39.0                  | 54.5                |  |
| 250  | 142                                   | 35.3           | 11.3                   | 4.15                                     | 61.8                                      | 33.7                                      | 20.5                                    | 2.34                                     | 4.06            | 150.0                                                         | 57.2    | 51.0                  | 72.0                |  |
| 300  | 162                                   | 46.1           | 15.0                   | 5.32                                     | 72.8                                      | 41.7                                      | 27.1                                    | 3.06                                     | 5.16            | 199.0                                                         | 70.2    | 63.0                  | 89.5                |  |

<sup>a</sup> Data from:

V. Johnson (1960), NBS, Wright Air Development Div. (WADD) Technical Report 60-56, Part II. U.S. Government Printing Office, Washington, D.C. D. H. J. Goodall (1970), A.P.T. Division, Culham Science Center, Abingdon, Oxfordshire, UK.

<sup>b</sup> The high thermal conductivity of nearly pure metals is variable and strongly depends on their impurity content; see Sec. 6.4.2.

## A2.2 Emissivity of technical materials at a wavelength of about 10 µm (room temperature) (Sec.

## 2.4)

| Material                   |          | Emissivity |           |
|----------------------------|----------|------------|-----------|
|                            |          | highly     | common    |
|                            | polished | oxidized   | condition |
| Metallic:                  |          |            |           |
| Ag                         | 0.01     |            |           |
| Cu                         | 0.02     | 0.6        |           |
| Au                         | 0.02     |            |           |
| Al                         | 0.03     | 0.3        |           |
| Brass                      | 0.03     | 0.6        |           |
| Soft-solder                |          |            | 0.03      |
| Nb, crystalline, bulk      |          |            | 0.04      |
| Lead                       | 0.05     |            |           |
| Та                         | 0.06     |            |           |
| Ni                         | 0.06     |            |           |
| Cr                         | 0.07     |            |           |
| Stainless Steel            |          |            | 0.07      |
| Ti                         |          |            | 0.09      |
| Tin (gray), single crystal |          |            | 0.6       |
| Nonmetallic:               |          |            |           |
| IMI 7031 varnish           |          |            | 0.9       |
| Phenolic lacquer           |          |            | 0.9       |
| Plastic tape               |          |            | 0.9       |
| Glass                      |          |            | 0.9       |

Compiled from:

American Institute of Physics Handbook (1972), 3<sup>rd</sup> edition, Chapter 6, McGraw–Hill, New York.

M. M. Fulk, M. M. Reynolds, and O. E. Park (1955), *Proc 1954 Cryogenic Eng. Conf.*, Nat. Bur. Stands. (U.S.) Report No. 3517, p. 151. U.S. Government Printing Office, Washington, D.C.

W. H. McAdams (1954), *Heat Transmission*, 3<sup>rd</sup> edition, McGraw–Hill, New York.

W. T. Ziegler and H. Cheung (1957), *Proc 1956 Cryogenic Engineering Conference*, National Bureau of Standards, p. 100. U.S. Government Printing Office, Washington, D.C.

Emissivities of additional materials at room temperature are available in the technical reference section of The

*Temperature Handbook* (2002), p. Z-171. Omega Engineering Inc., Stamford, Connecticut (http://www.omega.com/).

# A2.3 Heat conductance across solid interfaces pressed together with 445 N force (45 kgf or 100 lbf) (Sec. 2.6)

Heat conductance at a force level F other than 445 N can be determined by multiplying these data by the ratio F/445 N. In addition to these data, see Fig. 2.7 for heat conductance values covering a wide range of temperatures (0.1 K to 300 K) for pressed contacts of gold/gold, indium/copper, copper/copper, and stainless/stainless. Data are also given in Fig. 2.7 for solder, grease, and varnish joints.

| Interface Materials | 4.2 K                              | 77 K                      | y *              |
|---------------------|------------------------------------|---------------------------|------------------|
| Gold/Gold           | $2 \times 10^{-1} \text{ W/K}^{a}$ |                           | 1.3 <sup>a</sup> |
| Copper/Copper       | $1\times 10^{-2}~W/K^{b}$          | $3\times 10^{-1}~W/K^{b}$ | 1.3 <sup>a</sup> |
| Steel/Steel         | $5\times 10^{-3}~W/K^{b}$          | $3\times 10^{-1}~W/K^{b}$ |                  |
| Sapphire/Sapphire   | $7\times 10^{-4}~W/K^{a}$          |                           | 3 <sup>a</sup>   |

\* Values of y are for calculating the heat conductance at temperatures below 4.2 K by using Eq. (2.14) in Sec. 2.6.

<sup>a</sup> R. Berman and C. F. Mate (1958), *Nature* 182, 1661.

<sup>b</sup> R. Berman (1956), J. Appl. Phys. 27, 318.

# A3. Cryostat construction (ref. Chapter 3)

A3.1 High-thermal-conductivity construction-metal properties: RRR, thermal conductivity, and electrical resistivity (Sec. 3.2.2) RRR =  $\rho_{293K}/\rho_{4K}$ , the residual resistivity ratio; <sup>a</sup>  $\lambda$  = thermal conductivity;  $\rho$  = electrical resistivity

The thermal conductivities of additional construction materials are shown in Fig. 2.1 and tabulated in Appendix A6.7.

| Material                                                   | RRR <sup>a,f</sup>                | $\lambda_{293\ K}{}^{g}$ | $\lambda_{4.2\ K}{}^{f,h}$ | $\rho_{293\ K}{}^{f,g}$ | $\rho_{77K}{}^{\rm f}$ | Use                                                                 | Comments                                                                                                                                                                                                                      |
|------------------------------------------------------------|-----------------------------------|--------------------------|----------------------------|-------------------------|------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | $(\equiv\!\rho_{293K}/\rho_{4K})$ | $[W/(m \cdot K)]$        | $[W/(m \cdot K)]$          | [µΩ·cm]                 | [µΩ·cm]                |                                                                     |                                                                                                                                                                                                                               |
| <u>Copper</u>                                              |                                   |                          |                            |                         |                        |                                                                     |                                                                                                                                                                                                                               |
| High purity<br>(99.999 % pure) <sup>c,d</sup>              | ~2000                             | 394                      | ~11300                     | 1.68                    | 0.19                   | Very high<br>thermal-cond.<br>parts.                                | Thermal conductivity can be<br>increased by annealing; see<br>footnotes c and d.                                                                                                                                              |
| Grade C10100 $^{b,c,d}$<br>(99.99 % pure)                  | ~150                              | 394                      | ~850                       | 1.72                    | 0.19                   | cond. foil,<br>rods, plates,                                        | increased by annealing; see<br>footnotes c and d.                                                                                                                                                                             |
| Electronic grade C10200 <sup>b,c,d</sup><br>(99.95 % pure) | ~100                              | 390                      | ~560                       | 1.72                    | 0.19                   | and tubes.                                                          |                                                                                                                                                                                                                               |
| ETP<br>Grade C11000 <sup>b,c</sup>                         | ~100                              | 390                      | ~560                       | 1.71                    |                        | High thermal-<br>cond. rods,<br>plates, wire,<br>and wire<br>braid. | ETP ≡ electrolytic-tough-pitch<br>copper<br>Contains about 0.3 % oxygen—<br>cannot be used for<br>hydrogen brazing<br>Thermal conductivity of cold-<br>worked ETP copper can be<br>increased by annealing; see<br>footnote c. |
| Phosphorus deoxidized                                      | 3 to 5                            | 339                      | ~14 to 24                  | 2.03                    | _                      | Tubes                                                               |                                                                                                                                                                                                                               |

Grade C12200

| Material                   | RRR <sup>a,f</sup>               | $\lambda_{293K}{}^{g}$ | $\lambda_{4.2 \ K}{}^{f,h}$ | $\rho_{293K}{}^{f,g}$ | $\rho_{77K}{}^{\rm f}$ | Use | Comments |
|----------------------------|----------------------------------|------------------------|-----------------------------|-----------------------|------------------------|-----|----------|
|                            | $(\equiv \rho_{293K}/\rho_{4K})$ | [W/(m·K)]              | [W/(m·K)]                   | [µΩ·cm]               | [µΩ·cm]                |     |          |
| Brass                      | ~2.5                             | 125                    | ~4.5                        | 7.2                   | 4.7                    |     |          |
| Free cutting brass         |                                  |                        |                             |                       |                        |     |          |
| Grade C36000               |                                  |                        |                             |                       |                        |     |          |
| Beryllium copper, annealed | 1.5 to 2.5                       | ~84                    | ~1.8 to 3.0                 | 6.4 to 10.7           | 4.2 to 8.5             |     |          |
| Grade C17000–C17300        |                                  | depends on             |                             | depends on            | depends on             |     |          |
|                            |                                  | processing             |                             | processing            | processing             |     |          |
| Aluminum                   |                                  |                        |                             |                       |                        |     |          |
| 99.999 % high purity       | ~1000                            | 235                    | ~3400                       | 2.76                  | 0.23                   |     |          |
| Grade 1100                 | ~14                              | 222                    | ~45                         |                       | _                      |     |          |
| Grade 6063                 | ~7                               | 218                    | ~22                         |                       | _                      |     |          |
| Grade 5052                 | ~1.4                             | 138                    | ~2.8                        | 4.93                  | _                      |     |          |

<sup>a</sup> The listed RRR values are nominal and can vary by about 50 % from sample to sample for the purer grades, depending on the amount and type of impurities as well as cold-work condition.

<sup>b</sup> Unified Numbering System (UNS) grade numbers for metals and alloys.

<sup>c</sup> The thermal and electrical conductivity of *deformed* and *coldworked* high-purity, oxygen-free, and ETP copper can be increased (depending on the amount of cold work) by annealing. Heat in vacuum ( $\lesssim 10^{-4}$  torr) or argon at about 500 °C for about an hour. If vacuum or argon are not readily available, copper can be heated in air, but a surface scale forms, which can be removed afterward with dilute nitric acid.

- <sup>d</sup> Although this is not commonly done, further increase in the thermal and electrical conductivity can be obtained by oxidizing the magnetic iron impurities in highpurity and oxygen-free copper (but not in ETP copper, which contains too many impurities other than iron). The RRR of oxygen-free copper is typically increased from ~100 as received, to ~800 after oxidation; the RRR of high purity (99.99 %) copper is typically increased from ~1500 as received, to more than 10 000 after oxidation. Heat the copper part at about 1000 °C in oxygen at about 0.13 Pa to 1.3 Pa (10<sup>-3</sup> torr to 10<sup>-2</sup> torr) pressure. About a day of annealing is required for small parts, up to a month for large copper billets [ref. F. R. Fickett (1974), *Mater. Sci. Eng.* 14, 199–210].
- <sup>e</sup> Sources of oxygen-free copper are not as plentiful as ETP copper, especially in tube form. However, if high-thermal-conductivity tubes are needed or if hydrogen brazing is to be done, oxygen-free copper is required. Suppliers of oxygen-free copper are listed in Appendix A1.7 under Material, copper.

- <sup>f</sup> From C. A. Thompson, W. M. Manganaro, and F. R. Fickett (1990), *Cryogenic Properties of Copper*, Wall Chart, NIST, and the references cited therein. U.S. Government Printing Office, Washington D.C.
- <sup>g</sup> Metals Handbook (1961), Vol. 1, Properties and Selection of Materials, 8<sup>th</sup> edition, ASM International, Materials Park, Ohio.
- <sup>h</sup> Calculated from the Wiedemann–Franz–Lorenz law, Eq. (2.4):  $\lambda = L_N T / \rho$ , where  $L_N$  is the Lorenz constant; this results in

 $\lambda(4.2 \text{ K}) = \lambda(293 \text{ K}) (\rho_{293\text{K}}/\rho_{4\text{K}}) (4.2 \text{ K}/293 \text{ K}).$ 

#### A3.2 Heat conduction along thin-walled stainless-steel tubing <sup>a</sup> (Sec. 3.2.2)

The heat conduction values tabulated in this table may be simply scaled to lengths other than 10 cm (inversely proportional) and wall thicknesses other than those listed in column 2 (directly proportional).

The tabulated values of conducted heat assume no gas cooling of the tubing. If the gas boiled off by the conducted heat were to cool the tubing with 100 % efficiency, the resultant heat flow would be 1/10 of the values given for T = 77 K and 1/32 of those for T = 300 K.

| Tube O D | Wall             | Cross Sectional    | Heat conducte | ed [milliwatts] |
|----------|------------------|--------------------|---------------|-----------------|
| [inches] | [inches (mm)]    | [cm <sup>2</sup> ] | at 4 K and t  | he other at:    |
|          |                  |                    | T=77 K        | T=300 K         |
| 1/8      | 0.004" (0.10 mm) | 0.0098             | 3.1 mW        | 30 mW           |
| 3/16     | 0.004" (0.10 mm) | 0.0149             | 4.7           | 45              |
| 1/4      | 0.004" (0.10 mm) | 0.020              | 6.3           | 61              |
| 3/8      | 0.006" (0.15 mm) | 0.045              | 14            | 137             |
| 1/2      | 0.006" (0.15 mm) | 0.060              | 19            | 184             |
| 5/8      | 0.006" (0.15 mm) | 0.075              | 24            | 230             |
| 3/4      | 0.006" (0.15 mm) | 0.091              | 29            | 277             |
| 1        | 0.006" (0.15 mm) | 0.121              | 38            | 370             |
| 1 1/4    | 0.010" (0.25 mm) | 0.251              | 80            | 770             |
| 1 1/2    | 0.010" (0.25 mm) | 0.302              | 96            | 924             |
| 2        | 0.015" (0.38 mm) | 0.604              | 191           | 1847            |
|          |                  |                    |               |                 |

All dimensions are in inches.

<sup>a</sup> From:

- V. Johnson (1960), NBS, Wright Air Development Div. (WADD) Technical Report 60-56, Part II. U.S. Government Printing Office, Washington, D.C.
- D. H. J. Goodall (1970), A.P.T. Division, Culham Science Center, Abingdon, Oxfordshire, UK.

| A3.3 | Pipe and | tubing | sizes <sup><i>a,b</i></sup> | (Sec. | 3.5 | ) |
|------|----------|--------|-----------------------------|-------|-----|---|
|------|----------|--------|-----------------------------|-------|-----|---|

|              | Туре К Сој      | oper Tubing | Brass    | s Pipe   | Steel and PVC P | ipe, Schedule 40 | Soft Copper Ref | rigeration Tubing |
|--------------|-----------------|-------------|----------|----------|-----------------|------------------|-----------------|-------------------|
| Nominal Size | Internal        | External    | Internal | External | Internal        | External         | Internal        | External          |
| [inches]     | Diameter        | Diameter    | Diameter | Diameter | Diameter        | Diameter         | Diameter        | Diameter          |
| 1/8          | NA <sup>c</sup> | NA          | NA       | NA       | 0.269           | 0.405            | 0.065           | 0.125             |
| 1/4          | 0.30            | 0.375       | 0.410    | 0.540    | 0.364           | 0.540            | 0.190           | 0.250             |
| 3/8          | 0.40            | 0.500       | 0.545    | 0.675    | 0.493           | 0.675            | 0.311           | 0.375             |
| 1/2          | 0.53            | 0.625       | 0.710    | 0.840    | 0.622           | 0.840            | 0.436           | 0.500             |
| 5/8          | 0.65            | 0.750       | NA       | NA       | NA              | NA               | 0.555           | 0.625             |
| 3/4          | 0.75            | 0.875       | 0.920    | 1.050    | 0.824           | 1.050            | 0.680           | 0.750             |
| 1            | 1.00            | 1.125       | 1.185    | 1.315    | 1.049           | 1.315            |                 |                   |
| 1-1/4        | 1.25            | 1.375       | 1.530    | 1.660    | 1.380           | 1.660            |                 |                   |
| 1-1/2        | 1.48            | 1.625       | 1.770    | 1.900    | 1.610           | 1.900            |                 |                   |
| 2            | 1.96            | 2.125       | 2.245    | 2.375    | 2.067           | 2.375            |                 |                   |
| 2-1/2        | 2.44            | 2.625       | 2.745    | 2.875    | 2.469           | 2.875            |                 |                   |
| 3            | 2.91            | 3.125       | 3.334    | 3.500    | 3.068           | 3.500            |                 |                   |
| 3-1/2        | 3.39            | 3.625       | 3.810    | 4.000    | 3.548           | 4.000            |                 |                   |
| 4            | 3.86            | 4.125       | 4.296    | 4.500    | 4.026           | 4.500            |                 |                   |
| 5            | 4.81            | 5.125       | 5.298    | 5.562    | 5.047           | 5.562            |                 |                   |
| 6            | 5.74            | 6.125       | 6.309    | 6.625    | 6.065           | 6.625            |                 |                   |

<sup>a</sup> From B. Brandt (2002), National High-Field Magnet Laboratory, Florida State University, personal communication. <sup>b</sup> All dimensions are in inches.

<sup>c</sup> NA  $\equiv$  Not Available.

# A3.4 Screw and bolt sizes, hexagon socket-head sizes, and load limits (Sec. 3.3.1)

Maximum load and minimum engaged thread length are determined for stainless-steel (SS) bolts assuming a yield strength of 414 MPa (60 ksi). Hexagon socket-head diameters and heights are given to facilitate laying out bolt circles on vacuum flanges.

| Screw <sup>a</sup><br>Size –<br>Number<br>of<br>threads<br>per inch | Major Diam.<br>[inches (mm)] | Nearest<br>Standard<br>Metric Size | Maximum <sup>b</sup><br>load<br>(SS bolts)<br>[lbf (kN)] | Engaged length <sup>c</sup><br>(SS into SS)<br>[inches (mm)] | Number <sup>c</sup><br>engaged<br>threads<br>(SS into SS) | Engaged length<br>(SS into Al)<br>[inches (mm)] | Number<br>engaged<br>threads<br>(SS into<br>Al) | Socke<br>diam<br>[inc | et head<br>eter <sup>d</sup><br>hes] | Socke<br>heig<br>[inc | t head<br>cht <sup>d</sup><br>hes] | Tap<br>drill<br>size<br>(inch,<br>number,<br>& letter<br>drills) | Clearance<br>drill size<br>(number<br>& inch<br>drills) |
|---------------------------------------------------------------------|------------------------------|------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------|--------------------------------------|-----------------------|------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|
|                                                                     |                              |                                    |                                                          |                                                              |                                                           |                                                 |                                                 | Max                   | Min                                  | Max                   | Min                                |                                                                  |                                                         |
| 0-80                                                                | 0.0600 (1.524)               | $M1.6 \times 0.35$                 | 108 (0.48)                                               | 0.0328 (0.833)                                               | 2.6                                                       | 0.0654 (1.66)                                   | 5.2                                             | 0.096                 | 0.091                                | 0.060                 | 0.057                              | 3/64                                                             | 51                                                      |
| 1-64                                                                | 0.0730 (1.854)               | $M2 \times 0.4$                    | 157 (0.70)                                               | 0.0396 (1.01)                                                | 2.5                                                       | 0.0786 (2.00)                                   | 5.0                                             | 0.118                 | 0.112                                | 0.073                 | 0.070                              | 53                                                               | 47                                                      |
| 1-72                                                                | دد                           | "                                  | 167 (0.74)                                               | 0.0407 (1.03)                                                | 2.9                                                       | 0.0831 (2.11)                                   | 6.0                                             | "                     | "                                    | "                     | "                                  | 53                                                               | 47                                                      |
| 2-56                                                                | 0.0860 (2.184)               | **                                 | 222 (0.99)                                               | 0.0471 (1.20)                                                | 2.6                                                       | 0.0938 (2.38)                                   | 5.3                                             | 0.140                 | 0.134                                | 0.086                 | 0.083                              | 50                                                               | 42                                                      |
| 2-64                                                                | **                           | "                                  | 236 (1.05)                                               | 0.0482 (1.22)                                                | 3.1                                                       | 0.0100 (0.25)                                   | 6.4                                             | "                     | "                                    | "                     | "                                  | 50                                                               | 42                                                      |
| 3-48                                                                | 0.0990 (2.515)               | $M2.5 \times 0.45$                 | 292 (1.30)                                               | 0.0539 (1.37)                                                | 2.6                                                       | 0.0107 (0.27)                                   | 5.2                                             | 0.161                 | 0.154                                | 0.099                 | 0.095                              | 47                                                               | 37                                                      |
| 3-56                                                                | "                            | دد                                 | 314 (1.40)                                               | 0.0558 (1.42)                                                | 3.1                                                       | 0.115 (2.93)                                    | 6.5                                             | دد                    | دد                                   | دد                    | دد                                 | 46                                                               | 37                                                      |
| 4-40                                                                | 0.1120 (2.845)               | M3 × 0.5                           | 362 (1.61)                                               | 0.0602 (1.53)                                                | 2.4                                                       | 0.118 (2.99)                                    | 4.7                                             | 0.183                 | 0.176                                | 0.112                 | 0.108                              | 43                                                               | 31                                                      |
| 4-48                                                                | "                            | دد                                 | 396 (1.76)                                               | 0.0625 (1.59)                                                | 3.0                                                       | 0.129 (3.27)                                    | 6.2                                             | دد                    | دد                                   | "                     | "                                  | 3/32                                                             | 31                                                      |
| 5-40                                                                | 0.1250 (3.175)               | "                                  | 477 (2.12)                                               | 0.0688 (1.75)                                                | 2.8                                                       | 0.139 (3.53)                                    | 5.6                                             | 0.205                 | 0.198                                | 0.125                 | 0.121                              | 38                                                               | 29                                                      |
| 5-44                                                                |                              | "                                  | 499 (2.22)                                               | 0.0703 (1.79)                                                | 3.1                                                       | 0.145 (3.68)                                    | 6.4                                             | دد                    | دد                                   | دد                    | دد                                 | 37                                                               | 29                                                      |
| 6-32                                                                | 0.1380 (3.505)               | $M4 \times 0.7$                    | 545 (2.42)                                               | 0.0741 (1.88)                                                | 2.4                                                       | 0.144 (3.65)                                    | 4.6                                             | 0.226                 | 0.218                                | 0.138                 | 0.134                              | 36                                                               | 27                                                      |
| 6-40                                                                |                              | "                                  | 609 (2.71)                                               | 0.0775 (1.97)                                                | 3.1                                                       | 0.161 (4.08)                                    | 6.4                                             | "                     | "                                    | "                     | "                                  | 33                                                               | 27                                                      |
| 8-32                                                                | 0.1640 (4.166)               | دد                                 | 841 (3.74)                                               | 0.0914 (2.32)                                                | 2.9                                                       | 0.186 (4.73)                                    | 6.0                                             | 0.270                 | 0.262                                | 0.164                 | 0.159                              | 29                                                               | 18                                                      |

| Screw <sup>a</sup><br>Size –<br>Number<br>of<br>threads<br>per inch | Major Diam.<br>[inches (mm)] | Nearest<br>Standard<br>Metric Size | Maximum <sup>b</sup><br>load<br>(SS bolts)<br>[lbf (kN)] | Engaged length <sup>c</sup><br>(SS into SS)<br>[inches (mm)] | Number <sup>c</sup><br>engaged<br>threads<br>(SS into SS) | Engaged length<br>(SS into Al)<br>[inches (mm)] | Number<br>engaged<br>threads<br>(SS into<br>Al) | Socke<br>diam<br>[inc | et head<br>eter <sup>d</sup><br>hes] | Socke<br>heiį<br>[inc | et head<br>ght <sup>d</sup><br>hes] | Tap<br>drill<br>size<br>(inch,<br>number,<br>& letter<br>drills) | Clearance<br>drill size<br>(number<br>& inch<br>drills) |
|---------------------------------------------------------------------|------------------------------|------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------|--------------------------------------|-----------------------|-------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|
|                                                                     |                              |                                    |                                                          |                                                              |                                                           |                                                 |                                                 | Max                   | Min                                  | Max                   | Min                                 |                                                                  |                                                         |
| 8-36                                                                | دد                           | "                                  | 884 (3.93)                                               | 0.0932 (2.37)                                                | 3.4                                                       | 0.196 (4.98)                                    | 7.1                                             | دد                    | "                                    | "                     | "                                   | 29                                                               | 18                                                      |
| 10-24                                                               | 0.1900 (4.826)               | M5 	imes 0.8                       | 1 050 (4.68)                                             | 0.103 (2.61)                                                 | 2.5                                                       | 0.201 (5.11)                                    | 4.8                                             | 0.312                 | 0.303                                | 0.190                 | 0.185                               | 26                                                               | 9                                                       |
| 10-32                                                               | دد                           | "                                  | 1 200 (5.34)                                             | 0.109 (2.76)                                                 | 3.5                                                       | 0.230 (5.83)                                    | 7.3                                             | "                     | دد                                   | دد                    | دد                                  | 21                                                               | 9                                                       |
| 12-24                                                               | 0.2160 (5.486)               | "                                  | 1 450 (6.45)                                             | 0.120 (3.05)                                                 | 2.9                                                       | 0.244 (6.20)                                    | 5.9                                             | —                     |                                      | —                     | —                                   | 16                                                               | 2                                                       |
| 12-28                                                               | دد                           | "                                  | 1 550 (6.88)                                             | 0.123 (3.13)                                                 | 3.5                                                       | 0.261 (6.62)                                    | 7.3                                             | —                     |                                      | —                     | —                                   | 15                                                               | 2                                                       |
| 1/4-20                                                              | 0.2500 (6.350)               | $M6 \times 1.0$                    | 1 910 (8.49)                                             | 0.138 (3.51)                                                 | 2.8                                                       | 0.278 (7.05)                                    | 5.6                                             | 0.375                 | 0.365                                | 0.250                 | 0.244                               | 7                                                                | 17/64                                                   |
| 1/4-28                                                              | **                           | "                                  | 2 180 (9.71)                                             | 0.146 (3.71)                                                 | 4.1                                                       | 0.318 (8.07)                                    | 8.9                                             | "                     | "                                    | "                     | "                                   | 3                                                                | 17/64                                                   |
| 5/16-18                                                             | 0.3125 (7.938)               | M8 × 1.25                          | 3 150 (14.0)                                             | 0.177 (4.48)                                                 | 3.2                                                       | 0.366 (9.30)                                    | 6.6                                             | 0.469                 | 0.457                                | 0.312                 | 0.306                               | F                                                                | 21/64                                                   |
| 5/16-24                                                             | **                           | $M8 \times 1.0$                    | 3 480 (15.5)                                             | 0.185 (4.69)                                                 | 4.4                                                       | 0.405 (10.3)                                    | 9.7                                             | "                     | "                                    | "                     | "                                   | Ι                                                                | 21/64                                                   |
| 3/8-16                                                              | 0.3750 (9.525)               | M10 × 1.5                          | 4 650 (20.7)                                             | 0.214 (5.43)                                                 | 3.4                                                       | 0.451 (11.5)                                    | 7.2                                             | 0.562                 | 0.550                                | 0.375                 | 0.368                               | 5/16                                                             | 25/64                                                   |
| 3/8-24                                                              | .د                           | M10 × 1.0                          | 5 270 (23.4)                                             | 0.226 (5.75)                                                 | 5.4                                                       | 0.511 (12.3)                                    | 12.3                                            | دد                    | دد                                   | دد                    | دد                                  | Q                                                                | 25/64                                                   |
| 7/16-14                                                             | 0.4375 (11.112)              | M12 × 1.75                         | 6 380 (28.4)                                             | 0.251 (6.37)                                                 | 3.5                                                       | 0.530 (13.5)                                    | 7.4                                             | 0.656                 | 0.642                                | 0.438                 | 0.430                               | U                                                                | 29/64                                                   |
| 7/16-20                                                             | "                            | M12 × 1.25                         | 7 120 (31.7)                                             | 0.263 (6.68)                                                 | 5.3                                                       | 0.592 (15.0)                                    | 11.8                                            | دد                    | دد                                   | دد                    |                                     | 25/64                                                            | 29/64                                                   |
| 1/2-13                                                              | 0.5000 (12.700)              | M12 × 1.75                         | 8 510 (37.9)                                             | 0.289 (7.34)                                                 | 3.8                                                       | 0.619 (15.7)                                    | 8.1                                             | 0.750                 | 0.735                                | 0.500                 | 0.492                               | 27/64                                                            | 33/63                                                   |
| 1/2-20                                                              | دد                           | M12 × 1.25                         | 9 600 (42.7)                                             | 0.305 (7.74)                                                 | 6.1                                                       | 0.698 (17.7)                                    | 14.0                                            | "                     | "                                    | "                     | "                                   | 29/64                                                            | 33/64                                                   |
| 9/16-12                                                             | 0.5625 (14.288)              | M16 × 2.0                          | 10 900 (48.6)                                            | 0.327 (8.30)                                                 | 3.9                                                       | 0.706 (17.9)                                    | 8.5                                             | _                     |                                      | _                     |                                     | 31/64                                                            | 37/64                                                   |
| 9/16-18                                                             | دد                           | M16 × 1.5                          | 12 200 (54.2)                                            | 0.343 (8.72)                                                 | 6.2                                                       | 0.788 (20.0)                                    | 14.2                                            | _                     |                                      | _                     |                                     | 33/64                                                            | 37/64                                                   |
| 5/8-11                                                              | 0.6250 (15.875)              | M16 × 2.0                          | 13 600 (60.3)                                            | 0.364 (9.25)                                                 | 4.0                                                       | 0.790 (20.1)                                    | 8.7                                             | 0.938                 | 0.921                                | 0.625                 | 0.616                               | 17/32                                                            | 41/64                                                   |
| 5/8-18                                                              |                              | M16 × 1.5                          | 15 400 (68.3)                                            | 0.385 (9.78)                                                 | 6.9                                                       | 0.894 (22.7)                                    | 16.1                                            | "                     | "                                    | "                     | "                                   | 37/64                                                            | 41/64                                                   |

| Screw <sup>a</sup><br>Size –<br>Number<br>of |                              |                     | Maximum <sup>b</sup><br>load |                                             | Number <sup>c</sup><br>engaged |                                | Number<br>engaged |               |                             |               |                             | Tap<br>drill<br>size<br>(inch, | Clearance<br>drill size |
|----------------------------------------------|------------------------------|---------------------|------------------------------|---------------------------------------------|--------------------------------|--------------------------------|-------------------|---------------|-----------------------------|---------------|-----------------------------|--------------------------------|-------------------------|
| threads per inch                             | Major Diam.<br>[inches (mm)] | Nearest<br>Standard | (SS bolts)<br>[lbf (kN)]     | Engaged length <sup>c</sup><br>(SS into SS) | threads<br>(SS into SS)        | Engaged length<br>(SS into Al) | threads (SS into  | Socke<br>diam | t head<br>eter <sup>d</sup> | Socke<br>heig | et head<br>ght <sup>d</sup> | number,<br>& letter            | (number<br>& inch       |
|                                              |                              | Metric Size         |                              | [inches (mm)]                               | · · · · ·                      | [inches (mm)]                  | Al)               | [inc          | hes]                        | [inc          | hes]                        | drills)                        | drills)                 |
|                                              |                              |                     |                              |                                             |                                |                                |                   | Max           | Min                         | Max           | Min                         |                                |                         |
| 3/4-10                                       | 0.7500 (19.050)              | M20 × 2.5           | 20 100 (89.3)                | 0.442 (11.2)                                | 4.4                            | 0.973 (24.7)                   | 9.7               | 1.125         | 1.107                       | 0.750         | 0.740                       | 21/32                          | 49/64                   |
| 3/4-16                                       | ۰۵                           | $M20 \times 1.5$    | 22 400 (99.5)                | 0.464 (11.8)                                | 7.4                            | 1.09 (25.6)                    | 17.4              | "             | دد                          | دد            | دد                          | 11/16                          | 49/64                   |

Al  $\equiv$  aluminum, SS  $\equiv$  stainless steel

<sup>a</sup> ANSI screw thread standard.

<sup>b</sup> It is good practice to derate these maximum loads by about a factor of 2 safety margin.

<sup>c</sup> To prevent galling and seizing, especially for stainless steel into stainless steel, use silver-plated stainless-steel bolts or coat them with MoS<sub>2</sub>. Sources of such screws are listed in Appendix A1.7 under Vacuum accessories, Screws.

<sup>d</sup> From R. O. Parmley, ed. (1997), Standard Handbook of Fastening and Joining, McGraw-Hill.

#### A3.5 Clearances for various types of fits

When machining parts that need to slip or slide over each other, the required gap varies with the type of fit desired and the diameter of the part. The following table can be used as a rough guide. For more critical parts, follow the detailed specifications in the *Machinery's Handbook* (2000), Industrial Press, Inc., New York.

Be sure to adjust the gap for any difference in thermal contractions between the two materials.

The clearance gaps tabulated below are appropriate only for moving parts that are protected from repeated air exposure. Beware of liquid air films that can freeze movable parts (see the tip in Sec. 1.5.1 for preventing this). Also, the gap between a dip probe and the inner wall of a dewar (or the bore of a magnet) must be much larger than the clearances indicated below. A 1 mm to (preferably) 2 mm gap is needed to accommodate frost that can form on surfaces during repeated insertion and removal of probes from a dewar.

| Type of Fit | Approximate Gap for a 1/8 <sup>th</sup> inch | Approximate Gap for a 1 inch | Approximate Gap for a 5 inch |
|-------------|----------------------------------------------|------------------------------|------------------------------|
|             | (3.2 mm) diameter shaft                      | (25 mm) diameter shaft       | (127 mm) diameter shaft      |
|             | $[10^{-3} \text{ inch}]$                     | $[10^{-3} \text{ inch}]$     | $[10^{-3} \text{ inch}]$     |
| Running fit | 0.3                                          | 1                            | 2                            |
| Sliding fit | 0.15                                         | 0.5                          | 1                            |
| Push fit    | <0.1                                         | < 0.3                        | <0.4                         |

# A3.6 Common braze materials $^{b,c,d}$ (Sec. 3.3.3)

| Braze Materials                                           | T <sub>melt</sub><br>[°C]  | Comments                                                                                                                                                                    | Materials Commonly<br>Joined                                                                 |
|-----------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 35%Au–65%Cu<br>50%Au–50%Cu<br>82%Au–18%Ni eutectic        | 990–1010<br>955–970<br>950 | For the first two braze materials, make gap<br>0.02 to 0.08 mm (0.001 to 0.003 inch)<br>(Trade name: NIORO) For NIORO, make<br>gap 0.10 to 0.13 mm (0.004 to<br>0.005 inch) | For any of the braze<br>materials in this group:<br>SS to SS<br>and<br>SS to Cu <sup>a</sup> |
| 72%Ag–28%Cu<br>63%Ag–27%Cu–10%In<br>61.5%Ag–24%Cu–14.5%In | 780<br>685–730<br>630–705  | Eutectic mixture (Trade name: CUSIL)<br>(Trade name: INCUSIL 10)<br>(Trade name: INCUSIL 15)                                                                                | For any of the braze<br>materials in this group:<br>Cu to Cu <sup>a</sup>                    |

<sup>a</sup> Be aware that copper melts at about 1083 °C.

<sup>b</sup> Available in wire, sheet, powder, and preforms.

<sup>c</sup> Braze stop material (STOPYT) can be used to control unwanted flow.

<sup>d</sup> Materials available from WESGO Division, GTE Prod. Corp., 477 Harbor Blvd., Belmont, CA 94022.

# A3.7 Solder: Physical properties <sup>*a,b*</sup> (Sec. 3.3.4)

Solder materials are generally ordered within each tabulated group according to melting temperature. Additional data on the electrical resistivities of selected solders at 295 K, 77 K, and 4 K are given in Appendix A8.4.

To make strong solder joints, hold the parts together with hand pressure while the solder is still molten, until it solidifies. For machined pieces, the gap between the parts should be as noted in the table, generally in the range of about 0.05 mm to 0.13 mm (0.002 inch to 0.005 inch).

Suppliers of specialty solders are given under the heading of Soldering materials in Appendix A1.7.

| $\begin{bmatrix} \text{percent by weight} \end{bmatrix}  \text{Temperature}  \begin{array}{c} \text{Density}^a \\ [g/cm^3] \end{array} \begin{bmatrix} \text{Cond.}^a \\ [@/of Cu] \\ [@/of Cu] \\ [@/m^K] \end{bmatrix} \\ \hline \begin{array}{c} \text{Cond.}^a \\ \text{Expansion}^a \\ [MPa] \\ \hline \begin{array}{c} \text{(MPa)} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{(Ma)} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} $ | Solder         | Composition         | Melting      | Mass                 | Electrical         | Thermal            | Thermal                | Tensile               | Comments              | Flux                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|--------------|----------------------|--------------------|--------------------|------------------------|-----------------------|-----------------------|------------------------|
| $[g/cm^{3}] [\% \text{ of } Cu] @ 85^{\circ}C = Expansion^{a} [MPa] \\ @ 20^{\circ}C \\ [10^{-6}] \\ \hline \\ Hard (silver) \\ \underline{solder group} \\ (Ag-Cu alloys) \\ \hline \\ \\ (Ag-Cu alloys) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | [percent by weight] | Temperature  | Density <sup>a</sup> | Cond. <sup>a</sup> | Cond. <sup>a</sup> | Coef. of               | Strength <sup>a</sup> |                       |                        |
| $[W/m \cdot K] @ 20^{\circ}C \\ [10^{\circ}]$<br>Hard (silver)<br><u>solder group</u><br>(Ag-Cu alloys)<br>$\begin{bmatrix} Hard (silver) \\ solder group \\ (Ag-Cu alloys) \end{bmatrix}$<br>$\begin{bmatrix} Gap should be about \\ 0.05 to 0.1 mm \\ (0.002 to 0.004 \\ inch) \end{bmatrix}$<br>$\begin{bmatrix} Gap should be about \\ 0.05 to 0.1 mm \\ (0.002 to 0.004 \\ inch) \end{bmatrix}$<br>$\begin{bmatrix} Boric acid mixed to a \\ paste with alcohol \\ (Wash with hot water after soldering; see Sec. 3.3.4) \end{bmatrix}$<br>$\begin{bmatrix} 56Ag-22Cu-17Zn-5Sn & 618-649 \ ^{\circ}C & 9.21 \\ (Safety Silv #56) & 1144-1200 \ ^{\circ}F \end{bmatrix}$<br>$\begin{bmatrix} 45Ag-30Cu-25Zn & 675-745 \ ^{\circ}C \\ (ASTM Grade 4) & 1247-1373 \ ^{\circ}F \end{bmatrix}$<br>$\begin{bmatrix} 20Ag-45Cu-35Zn & 775-815 \ ^{\circ}C \\ (ASTM Grade 4) & 1427-1373 \ ^{\circ}F \end{bmatrix}$<br>Flows readily on marking the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                     |              | $[g/cm^3]$           | [% of Cu]          | @ 85°C             | Expansion <sup>a</sup> | [MPa]                 |                       |                        |
| $\frac{[10^{-6}]}{\frac{Mard (silver)}{solder group}}$ $\frac{Gap should be about}{(Ag-Cu alloys)}$ $\frac{Gap (0.05 to 0.1 mm)}{(0.002 to 0.004)}$ $\frac{Gap (0.002 to 0.004)}{(0.002 to 0.004)}$ $\frac{Gap (0.002 to 0.004)}{(Mash with hot water)}$ $Gap $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                     |              |                      |                    | $[W/m \cdot K]$    | @ 20°C                 |                       |                       |                        |
| Hard (silver)<br>solder group<br>(Ag-Cu alloys)Gap should be about<br>0.05 to 0.1 mm<br>(0.002 to 0.004<br>inch)Fluoride flux, Borax, or<br>Boric acid mixed to a<br>paste with alcohol<br>(Wash with hot water<br>after soldering; see<br>Sec. 3.3.4)56Ag-22Cu-17Zn-5Sn<br>(Safety Silv #56)618-649 °C<br>1144-1200 °F9.2156Ag-30Cu-25Zn<br>(ASTM Grade 4)675-745 °C<br>1247-1373 °FStrong20Ag-45Cu-35Zn<br>(ASTM Grade 4)775-815 °C<br>1247-1373 °FFlows readily on<br>multime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                     |              |                      |                    |                    | $[10^{-6}]$            |                       |                       |                        |
| solder group       0.05 to 0.1 mm       Boric acid mixed to a         (Ag-Cu alloys)       0.05 to 0.1 mm       Boric acid mixed to a         (0.002 to 0.004       paste with alcohol       inch)       (Wash with hot water after soldering; see Sec. 3.3.4)         56Ag-22Cu-17Zn-5Sn       618-649 °C       9.21       Flows freely, ductile         45Ag-30Cu-25Zn       675-745 °C       Strong         (ASTM Grade 4)       1247-1373 °F       Strong         20Ag-45Cu-35Zn       775-815 °C       Flows readily on         (ASTM Grade 2)       1407       1400 °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hard (silver)  |                     |              |                      |                    |                    |                        |                       | Gan should be about   | Eluoride flux Borax or |
| (Ag-Cu alloys)       000 c0 0 mm       Dote 0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | solder group   |                     |              |                      |                    |                    |                        |                       | 0.05 to $0.1$ mm      | Boric acid mixed to a  |
| inch     (Wash with hot water after soldering; see Sec. 3.3.4)       56Ag=22Cu=17Zn=5Sn     618-649 °C     9.21       56Ag=22Cu=17Zn=5Sn     618-649 °C     9.21       Safety Silv #56)     1144-1200 °F       45Ag=30Cu=25Zn     675-745 °C       (ASTM Grade 4)     1247-1373 °F       20Ag=45Cu=35Zn     775-815 °C       Strong     Flows readily on realized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Ag–Cu alloys) |                     |              |                      |                    |                    |                        |                       | (0.002 to 0.004       | paste with alcohol     |
| after soldering; see         S6Ag-22Cu-17Zn-5Sn       618-649 °C       9.21         Flows freely, ductile         (Safety Silv #56)       1144-1200 °F         45Ag-30Cu-25Zn       675-745 °C         (ASTM Grade 4)       1247-1373 °F         20Ag-45Cu-35Zn       775-815 °C         20Ag-45Cu-35Zn       775-815 °C         Flows readily on       modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                     |              |                      |                    |                    |                        |                       | inch)                 | (Wash with hot water   |
| Sec. 3.3.4)         56Ag=22Cu=17Zn=5Sn       618=649 °C       9.21       Flows freely, ductile         (Safety Silv #56)       1144=1200 °F       Strong         45Ag=30Cu=25Zn       675=745 °C       Strong         (ASTM Grade 4)       1247=1373 °F       Strong         20Ag=45Cu=35Zn       775=815 °C       Flows readily on         (ASTM Grade 2)       1427=1400 °F       Strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                     |              |                      |                    |                    |                        |                       | ,                     | after soldering; see   |
| 56Ag-22Cu-17Zn-5Sn       618-649 °C       9.21       Flows freely, ductile         (Safety Silv #56)       1144-1200 °F       Strong         45Ag-30Cu-25Zn       675-745 °C       Strong         (ASTM Grade 4)       1247-1373 °F       Flows readily on         20Ag-45Cu-35Zn       775-815 °C       Flows readily on         (ASTM Grade 2)       1427-1400 °F       Flows readily on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                     |              |                      |                    |                    |                        |                       |                       | Sec. 3.3.4)            |
| $56Ag-22Cu-17Zn-5Sn$ $618-649  ^{\circ}C$ $9.21$ Flows freely, ductile $(Safety Silv #56)$ $1144-1200  ^{\circ}F$ Flows freely, ductile $45Ag-30Cu-25Zn$ $675-745  ^{\circ}C$ Strong $(ASTM Grade 4)$ $1247-1373  ^{\circ}F$ Strong $20Ag-45Cu-35Zn$ $775-815  ^{\circ}C$ Flows readily on $(ASTM Crade 2)$ $1427, 1400  ^{\circ}F$ Strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                     |              |                      |                    |                    |                        |                       |                       |                        |
| (Safety Silv #56)       1144–1200 °F         45Ag–30Cu–25Zn       675–745 °C       Strong         (ASTM Grade 4)       1247–1373 °F       Strong         20Ag–45Cu–35Zn       775–815 °C       Flows readily on         (ASTM Grade 2)       1427–1400 °F       making                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 56Ag-22Cu-17Zn-5Sn  | 618–649 °C   | 9.21                 |                    |                    |                        |                       | Flows freely, ductile |                        |
| 45Ag-30Cu-25Zn       675-745 °C       Strong         (ASTM Grade 4)       1247-1373 °F       Strong         20Ag-45Cu-35Zn       775-815 °C       Flows readily on         (ASTM Grade 2)       1427-1400 %F       welting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | (Safety Silv #56)   | 1144–1200 °F |                      |                    |                    |                        |                       |                       |                        |
| (ASTM Grade 4)       1247–1373 °F         20Ag–45Cu–35Zn       775–815 °C         Flows readily on         (ASTM Grade 2)       1427–1400 %F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 45Ag-30Cu-25Zn      | 675–745 °C   |                      |                    |                    |                        |                       | Strong                |                        |
| $20 \text{Ag}-45 \text{Cu}-35 \text{Zn} \qquad 775-815 \text{ °C} \qquad Flows readily on (ASTM Cruck 2) = 1427-1400 \text{ SE} \qquad realting $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | (ASTM Grade 4)      | 1247–1373 °F |                      |                    |                    |                        |                       | C                     |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 20Ag-45Cu-35Zn      | 775–815 °C   |                      |                    |                    |                        |                       | Flows readily on      |                        |
| (ASIM Grade 2) 1427–1499 F melling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | (ASTM Grade 2)      | 1427–1499 °F |                      |                    |                    |                        |                       | melting               |                        |

| Solder                                               | Composition<br>[percent by weight] | Melting<br>Temperature | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                           | Flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|------------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | 70Ag-20Cu-10Zn                     | 725–755 °C             |                                                      |                                               |                                                    |                                                                                |                                           | Malleable and ductile                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      | (ASTM Grade 7)                     | 1337–1391 °F           |                                                      |                                               |                                                    |                                                                                |                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      | Ag                                 | 960 °C<br>1760 °F      |                                                      |                                               |                                                    |                                                                                |                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>Soft–solder group</u><br>(alloys of Sn and<br>Pb) |                                    |                        |                                                      |                                               |                                                    |                                                                                |                                           | Gap should be about<br>0.05 to 0.13 mm<br>(0.002 to 0.005<br>inch) | See Table 3.8 to match<br>flux and metal:<br><i>Mild</i> : Rosin, rosin in<br>alcohol, paste of<br>petroleum jelly, ZnCl <sub>2</sub><br>& NH <sub>4</sub> Cl<br><i>Stronger, corrosive</i> :<br>ZnCl <sub>2</sub> (Zn dissolved in<br>HCl)<br><i>Stainless-steel flux,</i><br><i>highly corrosive</i> : ZnCl <sub>2</sub><br>with excess HCl,<br>H <sub>3</sub> PO <sub>4</sub> (after soldering,<br>neutralize these fluxes<br>with baking soda and<br>wash with water) |

| Solder | Composition<br>[percent by weight] | Melting<br>Temperature | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                                                                                                                                                                              | Flux                                                                                     |
|--------|------------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|        | 63Sn-37Pb<br>(60Sn-40Pb)           | 183 °C<br>361 °F       | 8.4                                                  | 11.5                                          | 50                                                 | 25.0                                                                           | 52                                        | Eutectic mixture,<br>high quality,<br>general-purpose<br>solder used in<br>electronics                                                                                                                                | Use pure (not<br>"activated") rosin flux<br>for electrical Cu<br>connections, Sec. 3.3.4 |
|        | 63Sn-36.65Pb-0.35Sb                | 183 °C<br>361 °F       |                                                      |                                               |                                                    |                                                                                |                                           | Eutectic mixture,<br>general-purpose<br>solder used for<br><i>electrical</i><br><i>connections</i> at low<br>temperatures. Sb<br>helps inhibit<br>embrittlement and<br>cracking from<br>cryogenic thermal<br>cycling. | Use pure (not<br>"activated") rosin flux<br>for electrical Cu<br>connections, Sec. 3.3.4 |
|        | 96.5Sn-3.5Ag                       | 221 °C<br>430 °F       | 7.50                                                 | 16.0                                          | 33                                                 | 30.2                                                                           | 39                                        | Eutectic mixture;<br>stronger than Pb–<br>Sn solders (a<br>common trade<br>name is<br>Staybrite™)                                                                                                                     |                                                                                          |

| Solder | Composition<br>[percent by weight] | Melting<br>Temperature   | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                                                                                                                                                              | Flux                                                                                         |
|--------|------------------------------------|--------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|        | 93Pb-5.2Sn-1.8Ag                   | 299 °C<br>570 °F         |                                                      |                                               |                                                    |                                                                                |                                           | Used for <i>electrical</i><br><i>connections</i> when a<br>higher melting<br>temperature is<br>needed. Low Sn<br>helps inhibit<br>embrittlement and<br>cracking from<br>cryogenic thermal<br>cycling. | Use pure (not<br>"activated") rosin flux<br>for electrical copper<br>connections, Sec. 3.3.4 |
|        | 97.5Pb–1.0Sn–1.5Ag                 | 309 °C<br>588 °F         |                                                      |                                               |                                                    |                                                                                |                                           | Eutectic higher-<br>melting-<br>temperature solder;<br>widely used in<br>semiconductor<br>assembly                                                                                                    |                                                                                              |
|        | 92.5Pb-5In-2.5Ag                   | 300–310 °C<br>572–590 °F | 11.02                                                | 5.5                                           | 25                                                 | 25.0                                                                           | 31                                        | Higher-melting-<br>temperature solder<br>with minimal Au-<br>leaching properties                                                                                                                      |                                                                                              |

| Solder                                       | Composition<br>[percent by weight] | Melting<br>Temperature   | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                                                                                                                          | Flux                                                                                                             |
|----------------------------------------------|------------------------------------|--------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                              | 95Pb–5Sn                           | 308–312 °C<br>586–593 °F | 11.06                                                | 8.8                                           | 23                                                 | 30.0                                                                           | 28                                        | Low-cost high-<br>melting<br>temperature solder.<br>Not recommended<br>for Ag- or Au-<br>plated parts<br>because Sn<br>aggressive<br>dissolves Ag and<br>Au films |                                                                                                                  |
| <u>Specialty solder</u><br>group             |                                    |                          |                                                      |                                               |                                                    |                                                                                |                                           |                                                                                                                                                                   |                                                                                                                  |
| Solders<br>compatible with<br>drinking water | 95.5Sn-3.5Cu-1Ag <sup>b</sup>      | 214–228 °C<br>417–442 °F |                                                      |                                               |                                                    |                                                                                |                                           | Pb-free solder for<br>potable water Cu<br>pipes; flows well                                                                                                       | Any of the mild fluxes                                                                                           |
| Solders for<br>aluminum                      | 10Sn–90Zn                          | 199 °C<br>390 °F         | 7.27                                                 | 15.0                                          | 61                                                 |                                                                                | 55                                        | Solders Al; eutectic<br>with lowest melting<br>temp.                                                                                                              | Reaction flux: contains<br>ZnCl <sub>2</sub> , tin chloride, or<br>both; must be heated to<br>280–380°C to work. |
|                                              | 60Sn–40Zn                          | 199–340 °C<br>390–644 °F |                                                      |                                               |                                                    |                                                                                |                                           | Solders Al; low melting temp.                                                                                                                                     | Reaction flux                                                                                                    |

| Solder                                          | Composition<br>[percent by weight] | Melting<br>Temperature | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                                                                                                            | Flux<br>Position flux: no flux                                                                                                |
|-------------------------------------------------|------------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                                 | 95ZII−5AI                          | 720 °F                 | 0.0                                                  |                                               |                                                    |                                                                                |                                           | strength                                                                                                                                            | needed for electronic applications                                                                                            |
| Solders for thin<br>noble-metal films           | 66.3In-33.7Bi                      | 72 °C<br>162 °F        | 7.99                                                 |                                               |                                                    |                                                                                |                                           | Eutectic; very low<br>melting<br>temperature solder<br>for thin Ag or Au<br>films and<br>contacting high- $T_c$<br>superconductors;<br>low strength | Mild ZnCl <sub>2</sub> solution for<br>soldering to Cu; no flux<br>needed for Ag if<br>surfaces are freshly<br>made and clean |
|                                                 | 97In–3Ag                           | 143 °C<br>290 °F       | 7.38                                                 | 23.0                                          | 73                                                 | 22.0                                                                           | 5.5                                       | Eutectic; low<br>leaching solder for<br>thin Ag or Au films<br>and contacting<br>high- $T_c$<br>superconductors                                     | Mild ZnCl <sub>2</sub> solution for<br>Cu; no flux needed for<br>Ag if surfaces are<br>freshly made and clean                 |
| Solders for<br>difficult-to-solder<br>materials | 52In-48Sn                          | 118 °C<br>244 °F       | 7.30                                                 | 11.7                                          | 34                                                 | 20.0                                                                           | 11.8                                      | Eutectic; low melting<br>temperature; higher<br>yield strength; Sn<br>leaches Ag or Au<br>films                                                     | Mild ZnCl <sub>2</sub> solution for<br>Cu                                                                                     |

| Solder                                       | Composition<br>[percent by weight] | Melting<br>Temperature   | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                                                                                                    | Flux                                                                                                                                                 |
|----------------------------------------------|------------------------------------|--------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | 50In-50Sn                          | 116–126 °C<br>241–259 °F | 7.30                                                 | 11.7                                          | 34                                                 | 20.0                                                                           | 11.8                                      | Wets glass readily.                                                                                                                         |                                                                                                                                                      |
|                                              | In                                 | 157 °C<br>315 °F         | 7.31                                                 | 24.0                                          | 86                                                 | 29.0                                                                           | 1.9                                       | Low strength; wets glass                                                                                                                    | No flux needed for<br>wetting glass, but clean<br>surfaces required; mild<br>ZnCl <sub>2</sub> flux needed for<br>soldering to Cu-based<br>materials |
|                                              | 62Sn–36Pb–2Ag                      | 179 °C<br>354 °F         | 8.41                                                 | 11.9                                          | 50                                                 | 27.0                                                                           | 44                                        | Eutectic; higher<br>strength, moderate<br>melting-<br>temperature solder                                                                    |                                                                                                                                                      |
| Solders for low<br>thermoelectric<br>voltage | 70.44Cd–29.56Sn                    |                          |                                                      |                                               |                                                    |                                                                                |                                           | Very low thermo-<br>electric power with<br>respect to copper<br>near room<br>temperature.<br>Contains cadmium,<br>whose fumes are<br>TOXIC. |                                                                                                                                                      |

| Solder                                                                                                          | Composition<br>[percent by weight] | Melting<br>Temperature | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                                                                                                                                               | Flux                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 | 97In–3Ag                           | 143 °C<br>290 °F       |                                                      |                                               |                                                    |                                                                                |                                           | Eutectic; a NON-<br>TOXIC alternative<br>to low-thermo-<br>electric-voltage<br>Cd-based solder; In<br>and Ag have<br>thermoelectric<br>powers close to<br>Cu; stronger than<br>pure In | Mild ZnCl <sub>2</sub> solution for<br>soldering to Cu                                                                                              |
| <u>Very low melting-</u><br><u>temp. solder</u><br><u>group</u><br>(Alloys of Bi with<br>Pb, Sn, Cd, and<br>In) |                                    |                        |                                                      |                                               |                                                    |                                                                                |                                           | As a class, Bi-based<br>solders expand on<br>solidification and<br>are weak and<br>brittle.                                                                                            | Corrosive ZnCl <sub>2</sub> solution<br>usually required; pre-<br>tin parts at higher temp.<br>$(\gtrsim 300 ^{\circ}\text{C})$ to activate<br>flux |
|                                                                                                                 | 49Bi-18Pb-12Sn-21In                | 58 °C<br>136 °F        | 9.01                                                 | 2.43                                          | 10                                                 | 23.0                                                                           | 43                                        | Eutectic alloy;<br>expands slightly on<br>solidification and<br>then shrinks slowly<br>over several hours                                                                              |                                                                                                                                                     |

| Solder | Composition<br>[percent by weight]            | Melting<br>Temperature | Mass<br>Density <sup>a</sup><br>[g/cm <sup>3</sup> ] | Electrical<br>Cond. <sup>a</sup><br>[% of Cu] | Thermal<br>Cond. <sup>a</sup><br>@ 85°C<br>[W/m·K] | Thermal<br>Coef. of<br>Expansion <sup>a</sup><br>@ 20°C<br>[10 <sup>-6</sup> ] | Tensile<br>Strength <sup>a</sup><br>[MPa] | Comments                                                                                                                                            | Flux                            |
|--------|-----------------------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|        | 50Bi–25Pb–12.5Sn–<br>12.5Cd<br>(Wood's metal) | 65–70 °C<br>149–158 °F | 9.60                                                 | 3.1                                           |                                                    |                                                                                | 31                                        | Contains Cd, whose<br>fumes are TOXIC.<br>Similar to Ostalloy®<br>158                                                                               |                                 |
|        | 50Bi–26.7Pb–13.3Sn–<br>10Cd<br>(Cerrobend)    | 70 °C<br>158 °F        | 9.58                                                 | 4.0                                           | 18                                                 | 22.0                                                                           | 41                                        | Contains Cd, whose fumes are TOXIC.                                                                                                                 |                                 |
|        | 66.3In-33.7Bi                                 | 72 °C<br>162 °F        | 7.99                                                 |                                               |                                                    |                                                                                |                                           | Eutectic; very low<br>melting<br>temperature solder<br>for thin Ag or Au<br>films and<br>contacting high- $T_c$<br>superconductors;<br>low strength | Mild ZnCl <sub>2</sub> solution |
|        | 55.5Bi-44.5Pb<br>(Cerrobase)                  | 124 °C<br>255 °F       | 10.44                                                | 4.0                                           | 4                                                  |                                                                                | 44                                        | Contracts slightly on solidification                                                                                                                |                                 |

<sup>a</sup> Indium Corp. of America, <u>http://www.indium.com/</u>
<sup>b</sup> J. Ross (2002), Canfield Corp., personal communication

| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Flux                   |                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mild <sup>b</sup> | Corrosive <sup>c</sup> | Special Flux<br>and/or Solder <sup>d</sup> |
| Aluminum<br>Aluminum–Bronze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                        | •                                          |
| Beryllium Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | •                      |                                            |
| Brass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                 | •                      |                                            |
| Copper<br>Comment Change into the contract of the | •                 | •                      |                                            |
| Copper-Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | •                      |                                            |
| Copper–Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | •                      |                                            |
| Copper–Silicon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | •                      |                                            |
| Gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                 |                        |                                            |
| Inconel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                 |                        |                                            |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                 | •                      |                                            |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                        | •                                          |
| Monel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | •                      |                                            |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | •                      |                                            |
| Nichrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                        | •                                          |
| Platinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                 |                        |                                            |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                 | •                      |                                            |
| Stainless Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                        | •                                          |
| Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | •                      |                                            |
| Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                 | •                      |                                            |
| Tin–Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                 | •                      |                                            |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | •                      |                                            |

## A3.8 Solder fluxes for soft-soldering common metals and alloys<sup>a</sup> (Sec. 3.3.4)

<sup>a</sup> Information from J. F. Smith and D. M. Borcina, Lead Industries Assoc., Inc., New York, New York.

- <sup>b</sup> <u>Mild fluxes</u>: rosin, rosin in alcohol, paste of petroleum jelly, zinc chloride, or ammonium chloride. After soldering, wash away flux with a solution of soap and water, or isopropanol. Be aware that fluxes other than pure rosin, or rosin dissolved in alcohol, will leave chloride residues trapped in the solder that eventually react with ambient moisture to form hydrochloric acid, which attacks electronic circuits and perforates thin (0.1 mm) stainless-steel tubing. For soldering copper electronic circuitry, use only pure rosin flux, not "activated" rosin flux or pastes. See Sec. 3.3.4 for more information.
- <sup>c</sup> <u>Corrosive flux</u>: zinc-chloride solution (zinc dissolved in hydrochloric acid). After soldering, wash away flux with water or isopropanol; then neutralize the pH by blotting the area with a baking-soda/water solution or ammonia/detergent/water solution.
- <sup>d</sup> <u>Special Flux and/or Solder</u>: Appendix A3.7 has information on highly-corrosive stainless-steel soldering fluxes as well as types of solders and fluxes that work with aluminum. After soldering, wash away corrosive acid fluxes with water or isopropanol; then neutralize the pH by blotting the area with a baking-soda/water solution or ammonia/detergent/water solution.

# A3.9 Solder: Superconducting properties<sup>*a*</sup> (Sec. 3.3.4)

 $T_{\rm c} \equiv$  superconducting transition temperature of the solder  $H_{\rm c} \equiv$  superconducting critical field of the solder

| $T_{\rm c}$ | $H_{\rm c}(1.3{\rm K})$                                                       | Melting Temperature                                                               |
|-------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| [K]         | [T]                                                                           | [°C]                                                                              |
|             |                                                                               |                                                                                   |
| 7.05        | 0.08                                                                          | 182–188                                                                           |
| 7.75        | 0.20                                                                          | 182–216                                                                           |
| 7.45        | 0.15                                                                          | 182–257                                                                           |
|             |                                                                               |                                                                                   |
| 3.75        | 0.036                                                                         | 232–240                                                                           |
|             |                                                                               |                                                                                   |
| 7.45        | 0.64                                                                          | 117–125                                                                           |
| 6.35        | 0.48                                                                          | 180–209                                                                           |
|             |                                                                               |                                                                                   |
| 7.25        | 0.11                                                                          | 309                                                                               |
|             | T <sub>c</sub><br>[K]<br>7.05<br>7.75<br>7.45<br>3.75<br>7.45<br>6.35<br>7.25 | $T_c$ $H_c(1.3K)$ [K][T]7.050.087.750.207.450.153.750.0367.450.646.350.487.250.11 |

<sup>a</sup> From W. H. Warren and W. G. Bader (1969), Rev. Sci. Instrum. 40, 180-182.

| Material                                                                 | Application and comments                                                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>Epoxies</u>                                                           |                                                                                                                                                                                                                                                                                                      |  |
| Araldite Type 1 <sup>TM a</sup>                                          |                                                                                                                                                                                                                                                                                                      |  |
| Eccobond 2 <sup>TM b</sup>                                               | Low-viscosity, unfilled epoxy. Robust and good adhesion at cryogenic temperatures.                                                                                                                                                                                                                   |  |
| Scotch-Weld DP-460 <sup>TM c</sup>                                       | High performance urethane, two-part epoxy, Duo-Pak <sup>™</sup> cartridge.                                                                                                                                                                                                                           |  |
| Silver-based epoxy <sup>d</sup>                                          | Electrically and thermally conductive epoxy.                                                                                                                                                                                                                                                         |  |
| Stycast 1266 <sup>TM e</sup>                                             | Low-viscosity, unfilled epoxy. High thermal expansion, but thin films of this epoxy do not crack and provide good adhesion at cryogenic temperatures. Crack resistance can be improved by heating to 90 °C for 4 h after epoxy has hardened.                                                         |  |
| Stycast 2850 FT™ <sup>е</sup>                                            | High-viscosity epoxy; filled with silica powder to provide a low thermal expansion matching that of copper.                                                                                                                                                                                          |  |
| <u>Tapes</u>                                                             |                                                                                                                                                                                                                                                                                                      |  |
| Fiberglass Electrical Tape                                               | Tough under cryogenic cycling and withstands cycling to higher-<br>temperatures when soldering.                                                                                                                                                                                                      |  |
| Kapton <sup>™</sup> Tape                                                 | A robust tape, well suited for providing tough, durable electrical insulation between cryostat parts.                                                                                                                                                                                                |  |
| Masking Tape                                                             | All-purpose tape. The adhesion improves with thermal cycling. Tape becomes brittle with age and eventually becomes difficult to remove.                                                                                                                                                              |  |
| Mylar™ Electrical Tape (3M #56 <i>f</i> ,<br>"yellow" tape) <sup>f</sup> | Maintains adhesion better than Kapton <sup>TM</sup> tape upon cryogenic cycling, but thinner ( $10^{-3}$ inch) and therefore better suited for applications where strength is not paramount. Commonly used for electrically isolating samples from Cu sample holders. Dielectric strength is 5500 V. |  |

A3.10 Sticky stuff for cryogenic applications (Sec. 3.3.5)

| Material                                                                                                                                              | Application and comments                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teflon <sup>™</sup> Pipe-thread Tape                                                                                                                  | Excellent for wrapping wires to supports structure for mechanical support, or fastening samples to sample holders, especially where you do not want to deal with sticky tape that is hard to remove. For the same reason, this is also the best tape for corralling fine delicate wires. To protect small wires from mechanical damage, place a layer of tape <i>under</i> the wires as well as over them when wrapping them to a support structure. |
| Varnish and Glues                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bostik™ Multibond Glue <sup>g</sup>                                                                                                                   | All-purpose glue that holds well at cryogenic temperatures. Easier to work with if thinned with acetone or methyl-ethyl-ketone.                                                                                                                                                                                                                                                                                                                      |
| Duco <sup>™</sup> Household Cement (model-<br>airplane glue)                                                                                          | All-purpose glue that survives thermal cycling well. Can be thinned or<br>removed with acetone. Not good for wires because the acetone dissolves<br>varnish insulation. Good for sticking samples to the sample rod in a<br>vibrating sample magnetometer.                                                                                                                                                                                           |
| IMI 7031 <sup>TM</sup> varnish (formerly GE 7031 <sup>TM</sup> ) varnish <sup>h</sup>                                                                 | Easier to work with if thinned to the consistency of water with ethanol (acetone also acts as a thinner, but it makes the varnish stringy and eats wire insulation). Baking the varnish under a heat lamp decreases drying time.                                                                                                                                                                                                                     |
| Loctite <sup>TM i</sup>                                                                                                                               | Low viscosity adhesive used in machine shops as a substitute for lock nuts, interference fits, or silver soldering. Good for securing tight-fitting metal parts. Cures at room temperature, but can be loosened by moderate heating with a torch. Works OK at cryogenic temperatures.                                                                                                                                                                |
| White Shellac                                                                                                                                         | Useful for adhering sapphire to sapphire.                                                                                                                                                                                                                                                                                                                                                                                                            |
| Miscellaneous                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Apiezon <sup>™</sup> Black Wax <sup>j</sup>                                                                                                           | Meltable adhesive.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Beeswax, and Alox $350^{\text{TM}}$<br>( $T_{\text{melt}}$ =38 °C to 43 °C), and Alox<br>2138F <sup>TM</sup> ( $T_{\text{melt}}$ =71 °C) <sup>k</sup> | Low-strength fillers. Although they yield at low stress, they are sometimes<br>useful as magnet-coil filling agents to minimize the probability of thermal-<br>runaway events that can otherwise result from microfracturing of epoxies<br>used to impregnate superconducting coils.                                                                                                                                                                 |
| BluTack <sup>TM 1</sup>                                                                                                                               | A gummy clay-like adhesive for generally attaching leads to support structures or mechanically holding almost anything in place.                                                                                                                                                                                                                                                                                                                     |
| Dental Floss (waxed or no-wax)                                                                                                                        | Excellent for tying things together (like samples to samples holders) and overwrapping fragile instrumentation leads wound onto heat sinks. Waxed floss is a little easier to stick in place during wrapping and tying.                                                                                                                                                                                                                              |

| Material                  | Application and comments                             |
|---------------------------|------------------------------------------------------|
| Silver paste <sup>d</sup> | Electrically and thermally conductive weak adhesive. |

Suppliers of specialty materials include:

- <sup>a</sup> Ciba Specialty Chemicals Corp, 4917 Dawn Ave., East Lansing, MI 48823, Tel. 517-351-5900, Fax 517-351-9003, <u>http://www.araldite.com/</u>
- <sup>b</sup> Emerson and Cuming Corp., <u>http://www.emersoncuming.com/</u>
- <sup>c</sup> 3M, <u>http://www.3M.com/</u>; distributed by MSC Industrial Supply, PN: 65861684, (Duo-Pak cartridge PN: 65861569), Tel. 800-645-7270, <u>http://www.mscdirect.com/</u>; or McMaster–Carr Supply Co., PN: 7467A26, <u>http://www.mcmaster.com/</u>
- <sup>d</sup> Ted Pella, Inc., P.O. Box 492477, Redding, CA 96049-2477, Tel. 800-237-3526; Fax. 530-243-3761, <u>http://www.TedPella.com/</u>
- <sup>e</sup> Emerson & Cumming, <u>http://www.emersoncumming.com/</u>
- <sup>f</sup> Essex Brownell Inc., 4670 Shelby Drive, Memphis, TN 38118, Tel. 800-805-4636, Fax. 219-461-4165; or from <u>http://www.mpsupplies.com/3mtape56.html</u>
- <sup>g</sup> Bostik Pty. Ltd., 51–71 High Street, Thomastown, Vic., Australia 3074, Tel 3-465-5211
- <sup>h</sup> Insulating Materials Inc., 1 W. Campbell Rd., Schenectady, NY 12306, Tel. 518-395-3200, Fax. 518-395-3300; small quantities available from Lake Shore Cryotronics, Westerville, OH 43081, Tel. 614-891-2244, Fax. 614-818-1600, <u>http://www.lakeshore.com/</u>
- <sup>i</sup> Loctite, a Hendel Company, <u>http://www.loctite.com/</u>
- <sup>j</sup> Apiezon Products, M&I Materials Ltd., P.O. Box 136, Manchester, M601AN, England. Tel. +44 161 875 4442, <u>http://www.apiezon.com/</u>
- <sup>k</sup> Alox Corp., Niagara Falls, NY
- <sup>1</sup> Bostik Findley, <u>http://www/bostikfindley-us.com/</u>

| Material                                        | Application and comments                                                                                                                                                                                                                     |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Lubricant coatings                              |                                                                                                                                                                                                                                              |  |
| Graphite                                        | Available as dry powder or spray-on coatings                                                                                                                                                                                                 |  |
| Molybdenum disulfide                            | Spray coatings; good for higher forces                                                                                                                                                                                                       |  |
| Teflon <sup>TM</sup>                            | Spray coatings, low coefficient of friction                                                                                                                                                                                                  |  |
| Thicker lubricant coatings                      |                                                                                                                                                                                                                                              |  |
| Emralon ® <sup>a</sup>                          | Flurocarbon lubricant in an epoxy mixture for thicker lubricating coatings<br>or for making cast parts with a low coefficient of friction                                                                                                    |  |
| Bearing materials                               |                                                                                                                                                                                                                                              |  |
| Kel-F <sup>тм b</sup>                           | Polychlorotrifluoroethylene. Stronger than Teflon <sup>TM</sup>                                                                                                                                                                              |  |
| Nylon TM                                        | Stronger than Teflon <sup>™</sup> , but higher coefficient of friction                                                                                                                                                                       |  |
| Teflon <sup>TM</sup>                            | Polyamide, low coefficient of friction, but softer than other materials                                                                                                                                                                      |  |
| Teflon <sup>™</sup> materials reinforced with N | ylon <sup>™</sup> , fiberglass and other materials                                                                                                                                                                                           |  |
| Flurogold ® <sup>c</sup>                        | Reinforced Teflon <sup>™</sup>                                                                                                                                                                                                               |  |
| Parmax ® <sup>d</sup>                           | High strength polymer, similar uses as Torlon ™                                                                                                                                                                                              |  |
| Rulon ® <sup>b</sup>                            | Teflon reinforced with Nylon, fiberglass, or other materials; available in various formulations. Type J has the lowest coefficient of friction of the Rulon® series. Applications include retainer rings for cryogenic ballbearing raceways. |  |
| Teflon-coated Kapton <sup>TM e</sup>            | Useful, for example, as a cryogenic gasket material since the Teflon <sup>™</sup> coating deforms for good sealing, but the stronger Kapton <sup>™</sup> base keeps the gasket from extruding.                                               |  |

# A3.11 Slippery stuff for cryogenic applications

| Material               | Application and comments                                                                                                                                                                                                                                                                                                                                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Torlon <sup>TM e</sup> | PolyAmide-Imide (Teflon <sup>™</sup> -Kapton <sup>™</sup> combination) high strength<br>polymer used for wear and friction parts. Capable of performing under<br>continuous stress at temperatures to 260°C. Low coefficient of linear<br>thermal expansion and high creep resistance provide good dimensional<br>stability. Available as sheet, rod, or tube. |

<sup>a</sup> Acheson Colloids Co., <u>http://www.achesonindustries.com/</u>

<sup>b</sup> San Diego Plastics, Inc., <u>http://www.sdplastics.com/</u>

<sup>c</sup> Granor Rubber and Engineering, <u>http://www.granor.com.au</u>/, Conroy & Knowlton Inc., <u>http://conroyknowlton.com/materials.htm</u>

<sup>d</sup> Mississippi Polymer Technologies, <u>http://www.mptpolymers.com/</u>

<sup>e</sup> Boedeker, <u>http://www.boedeker.com/</u>

# A3.12 Degassing rates of synthetic materials<sup>a</sup> (Sec. 3.8.3)

| Material                                       | Degassing rate at room<br>temperature before baking<br>[Pa·m <sup>3</sup> ·s <sup>-1</sup> ·m <sup>-2</sup> ] | Baking temperature<br>[°C] | Degassing rate at room<br>temp. after 24 h bake<br>[Pa·m <sup>3</sup> ·s <sup>-1</sup> ·m <sup>-2</sup> ] |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                               |                            |                                                                                                           |
| Araldite ATI <sup>™</sup> epoxy <sup>b</sup>   | $3.4 \times 10^{-4}$                                                                                          | 85                         | —                                                                                                         |
| Mycalex <sup>TM b</sup>                        | $2.7 	imes 10^{-6}$                                                                                           | 300                        | —                                                                                                         |
| Nylon 31 <sup>TM b</sup>                       | $1.1 \times 10^{-4}$                                                                                          | 120                        | $8.0 	imes 10^{-7}$                                                                                       |
| Perspex <sup>TM b</sup>                        | $1.3 \times 10^{-5}$                                                                                          | 85                         | $7.8 	imes 10^{-6}$                                                                                       |
| Polythene <sup>TM b</sup>                      | $4.0 	imes 10^{-4}$                                                                                           | 80                         | $6.6 \times 10^{-6}$                                                                                      |
| PTFE (Teflon <sup>™</sup> ) <sup>c</sup>       | $2.0 	imes 10^{-4}$                                                                                           | —                          | $4.7\times10^{^{-7a}}$                                                                                    |
| Viton A <sup>TM b</sup>                        | $1.3 \times 10^{-4}$                                                                                          | 200                        | $2.7 	imes 10^{-6}$                                                                                       |
| Polyimide (Kapton <sup>TM</sup> ) <sup>d</sup> | —                                                                                                             | 200*                       | $6.6 \times 10^{-8}$                                                                                      |
|                                                | _                                                                                                             | 300*                       | $4.0 \times 10^{-8}$                                                                                      |
| Kalrez <sup>TM e</sup>                         | _                                                                                                             | 300                        | $4.0 \times 10^{-8}$                                                                                      |
| Viton E60C <sup>TM e</sup>                     | _                                                                                                             | 150                        | $\sim 1 \times 10^{-6}$                                                                                   |
|                                                | _                                                                                                             | 300                        | $3.0 \times 10^{-8}$                                                                                      |
|                                                |                                                                                                               |                            |                                                                                                           |

Degassing rates of *metals* are given in Fig. 3.18.

\* 12 h bake

<sup>a</sup> Compiled by G. F. Weston (1985), Ultrahigh Vacuum Practice, Butterworth, London.

<sup>b</sup> R. S. Barton and R. P. Govier (1965), J. Vac. Sci. Tech. 2, 113.

<sup>c</sup> B. B. Dayton (1959), Trans. 6<sup>th</sup> Nat. Symp. Vac. Technol., I, p. 101.

<sup>d</sup> P. W. Hait (1967), *Vacuum* **17**, 547.

<sup>e</sup> L. DeChernatony (1977), Vacuum 27, 605.
| Metal Melting |                 | Temperature [K] giving a vapor pressure P |                                      |                                      |  |  |
|---------------|-----------------|-------------------------------------------|--------------------------------------|--------------------------------------|--|--|
|               | Temperature [K] | $P = 1.33 \times 10^{-9} \text{ Pa}$      | $P = 1.33 \times 10^{-7} \text{ Pa}$ | $P = 1.33 \times 10^{-5} \text{ Pa}$ |  |  |
|               |                 |                                           |                                      |                                      |  |  |
| Ag Silver     | 1234            | 721                                       | 800                                  | 899                                  |  |  |
| Al Aluminum   | 932             | 815                                       | 906                                  | 1015                                 |  |  |
| Au Gold       | 1336            | 915                                       | 1020                                 | 1150                                 |  |  |
| Ba Barium     | 983             | 450                                       | 510                                  | 583                                  |  |  |
| Be Beryllium  | 1556            | 832                                       | 925                                  | 1035                                 |  |  |
| C Carbon      |                 | 1695                                      | 1845                                 | 2030                                 |  |  |
| Ca Calcium    | 1123            | 470                                       | 524                                  | 590                                  |  |  |
| Cd Cadmium    | 594             | 293                                       | 328                                  | 368                                  |  |  |
| Ce Cerium     | 1077            | 1050                                      | 1175                                 | 1325                                 |  |  |
| Co Cobalt     | 1768            | 1020                                      | 1130                                 | 1265                                 |  |  |
| Cr Chromium   | 2176            | 960                                       | 1055                                 | 1175                                 |  |  |
| Cs Cesium     | 302             | 213                                       | 241                                  | 274                                  |  |  |
| Cu Copper     | 1357            | 855                                       | 945                                  | 1060                                 |  |  |
| Fe Iron       | 1809            | 1000                                      | 1105                                 | 1230                                 |  |  |
| Ge Germanium  | 1210            | 940                                       | 1030                                 | 1150                                 |  |  |
| Hg Mercury    | 234             | 170                                       | 190                                  | 214                                  |  |  |
| In Indium     | 429             | 641                                       | 716                                  | 812                                  |  |  |
| Ir Iridium    | 2727            | 1585                                      | 1755                                 | 1960                                 |  |  |
| K Potassium   | 336             | 247                                       | 276                                  | 315                                  |  |  |
| La Lanthanum  | 1193            | 1100                                      | 1220                                 | 1375                                 |  |  |
| Mg Magnesium  | 923             | 388                                       | 432                                  | 487                                  |  |  |
| Mn Manganese  | 1517            | 660                                       | 734                                  | 827                                  |  |  |
| Mo Molybdenum | 2890            | 1610                                      | 1770                                 | 1975                                 |  |  |
| Na Sodium     | 371             | 294                                       | 328                                  | 370                                  |  |  |
| Ni Nickel     | 1725            | 1040                                      | 1145                                 | 1270                                 |  |  |
| Pb Lead       | 601             | 516                                       | 580                                  | 656                                  |  |  |

## A3.13 Vapor pressures of metals<sup>a</sup> (Sec. 3.8.3)

Tabulated values in the three right-hand columns are expressed as the temperature required to produce the vapor pressures indicated at the head of each column.

These data are plotted in Figs. 3.19a and 3.19b.

| Metal        | Melting         | ing Temperature [K] giving a vapor pressu |                              |                                      |  |  |
|--------------|-----------------|-------------------------------------------|------------------------------|--------------------------------------|--|--|
|              | Temperature [K] | $P = 1.33 \times 10^{-9}$ Pa              | $P = 1.33 \times 10^{-7}$ Pa | $P = 1.33 \times 10^{-5} \text{ Pa}$ |  |  |
| Pd Palladium | 1823            | 945                                       | 1050                         | 1185                                 |  |  |
| Pt Platinum  | 2043            | 1335                                      | 1480                         | 1655                                 |  |  |
| Re Rhenium   | 3463            | 1900                                      | 2100                         | 2350                                 |  |  |
| Rh Rhodium   | 2239            | 1330                                      | 1470                         | 1640                                 |  |  |
| Sb Antimony  | 903             | 447                                       | 526                          | 582                                  |  |  |
| Se Selenium  | 490             | 286                                       | 317                          | 356                                  |  |  |
| Sn Tin       | 505             | 805                                       | 900                          | 1020                                 |  |  |
| Sr Strontium | 1043            | 433                                       | 483                          | 546                                  |  |  |
| Ta Tantalum  | 3270            | 1930                                      | 2120                         | 2370                                 |  |  |
| Th Thorium   | 1968            | 1450                                      | 1610                         | 1815                                 |  |  |
| Ti Titanium  | 1940            | 1140                                      | 1265                         | 1410                                 |  |  |
| W Tungsten   | 3650            | 2050                                      | 2270                         | 2520                                 |  |  |
| Zn Zinc      | 693             | 336                                       | 374                          | 421                                  |  |  |
| Zr Zirconium | 2128            | 1500                                      | 1665                         | 1855                                 |  |  |

<sup>a</sup> From G. F. Weston (1985), *Ultrahigh Vacuum Practice*, Butterworth, London, who extracted the data from compilations by R. E. Honig (1962), *RCA Rev.* **23**, 567; and R. E. Honig (1969), *RCA Rev.* **30**, 285.

# A3.14 Gas permeation constant at room temperature for synthetic materials <sup>*a*</sup> [for use with Eq. (3.27) of Sec. 3.8.3]

Additional gas permeations rates are given for:

- helium through glass in Fig. 3.20
- helium through ceramics in Fig. 3.21
- hydrogen through metals in Fig. 3.22.

|                                                | Permeation constant K in [m <sup>2</sup> s <sup>-1</sup> ] at 23 °C |                             |                          |                         |                       |  |
|------------------------------------------------|---------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------|-----------------------|--|
| Material                                       | Nitrogen                                                            | Oxygen                      | Hydrogen                 | Helium                  | Argon                 |  |
|                                                |                                                                     |                             |                          |                         |                       |  |
| Polythene <sup>TM b</sup>                      | $9.9 \times 10^{-13}$                                               | $3.0 \times 10^{-12}$       | $8.2\times10^{-12}$      | $5.7 \times 10^{-12}$   | $2.7\times10^{-12}$   |  |
| PTFE (Teflon <sup>TM</sup> ) <sup>b</sup>      | $2.5\times10^{-12}$                                                 | $8.2 \times 10^{-12}$       | $2.0 	imes 10^{-11}$     | $5.7 	imes 10^{-10}$    | $4.8\times10^{-12}$   |  |
| Perspex <sup>TM b</sup>                        | —                                                                   | —                           | $2.7 \times 10^{-12}$    | $5.7 \times 10^{-12}$   | —                     |  |
| Nylon 31 <sup>TM b</sup>                       | —                                                                   | —                           | $1.3 \times 10^{-13}$    | $3.0\times10^{-13}$     | —                     |  |
| Polystyrene <sup>TM b</sup>                    | —                                                                   | $5.1 \times 10^{-13}$       | $1.3 \times 10^{-11}$    | $1.3 	imes 10^{-11}$    | —                     |  |
| Polystyrene <sup>™ c</sup>                     | $6.4 \times 10^{-12}$                                               | $2.0 	imes 10^{-11}$        | $7.4 	imes 10^{-11}$     | -                       | —                     |  |
| Polyethylene <sup>™ c</sup>                    | $6 - 11 \times 10^{-13}$                                            | $2.5 - 3.4 \times 10^{-12}$ | $6 - 12 \times 10^{-12}$ | $4-5.7 \times 10^{-12}$ | —                     |  |
| Mylar 25-V-200 <sup>™ c</sup>                  | —                                                                   | —                           | $4.8\times10^{-13}$      | $8.0 	imes 10^{-13}$    | _                     |  |
| CS2368B (Neoprene <sup>™</sup> ) <sup>b</sup>  | $2.1\times10^{-13}$                                                 | $1.5 \times 10^{-12}$       | $8.2 \times 10^{-12}$    | $7.9\times10^{-12}$     | $1.3 \times 10^{-12}$ |  |
| Viton A <sup>TM b</sup>                        | —                                                                   | —                           | $2.2 \times 10^{-12}$    | $8.2 \times 10^{-12}$   | _                     |  |
| Polyimide (Kapton <sup>TM</sup> ) <sup>d</sup> | $3.2\times10^{-14}$                                                 | $1.1 \times 10^{-13}$       | $1.2 \times 10^{-12}$    | $2.1 \times 10^{-12}$   | _                     |  |

<sup>a</sup> Compiled by G. F. Weston (1985), Ultrahigh Vacuum Practice, Butterworth, London.

<sup>b</sup> J. R. Bailey (1964), *Handbook of Vacuum Physics*, Vol. 3, Part 4, Pergamon Press.

<sup>c</sup> D. W. Brubaker and K. Kammermeyer, *Ind. Eng., Chem.* 44, 1465 (1952); 45, 1148 (1953); 46, 733 (1954).

<sup>d</sup> D. E. George, in an article by W. G. Perkins (1973), J. Vac. Sci. Technol. 10, 543.

#### A4. Cryogenic apparatus wiring (ref. Chapter 4)

#### A4.1a Wire gauge size, area, resistivity, heat conduction, and optimum current (Secs. 4.1, 4.2, and 4.9.1)

To obtain the resistance-per-length for wire materials other than copper, multiply the room-temperature values for copper in the fourth column of the table by the ratio  $\rho_{293K}/\rho_{Cu} _{293K}$ , where  $\rho_{293K}$  and  $\rho_{Cu} _{293K}$  are the resistivity values of the new material and copper, respectively. Ratio values for several common wire materials at room temperature follow the table.

At 77 K and 4.2 K, the resistance-per-length may be similarly calculated by using the low-temperature resistivity data given in Appendix A4.2.

In practice, resistivity values may vary from those tabulated below because of different impurity concentrations, alloy concentrations, and heat treatments.

American Wire Gauge (AWG) and Brown & Sharpe (B&S) are the same gauge.

The nearest common *metric* wire sizes are given in the next table, A4.1b.

| American Wire<br>Gauge (AWG) or<br>Brown & Sharpe<br>(B&S) | Diameter<br>20°C <sup>a</sup><br>[mm] | Cross-sectional<br>area at 20°C <sup>a</sup><br>[mm <sup>2</sup> ] | Resistance of<br>annealed copper<br>wire at 20°C <sup>a</sup><br>[Ω/km] | Heat conducted along 1 m of copper wire<br>between the indicated temperatures <sup>b</sup><br>[W]<br>300K-4.2K 300K-76K 76K-4.2K |      | Optimum current<br>wire with one end<br>at tempera<br>$T_{upper} = 290 \text{K}$ | for 1 m of copper<br>at 4 K and the other<br>ture $T_{upper}^{c}$<br>A]<br>$T_{upper} = 77K$ |      |
|------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|
|                                                            |                                       |                                                                    |                                                                         |                                                                                                                                  |      |                                                                                  |                                                                                              |      |
| 0000                                                       | 11.68                                 | 107.2                                                              | 0.161                                                                   | 17.4                                                                                                                             | 10.0 | 7.35                                                                             | 536                                                                                          | 1072 |
| 000                                                        | 10.40                                 | 85.03                                                              | 0.203                                                                   | 13.8                                                                                                                             | 7.94 | 5.83                                                                             | 425                                                                                          | 850  |
| 00                                                         | 9.266                                 | 67.43                                                              | 0.256                                                                   | 10.9                                                                                                                             | 6.30 | 4.62                                                                             | 337                                                                                          | 674  |
| 0                                                          | 8.252                                 | 53.48                                                              | 0.322                                                                   | 8.66                                                                                                                             | 5.00 | 3.67                                                                             | 267                                                                                          | 535  |
| 1                                                          | 7.348                                 | 42.41                                                              | 0.407                                                                   | 6.87                                                                                                                             | 3.96 | 2.91                                                                             | 212                                                                                          | 424  |
| 2                                                          | 6.543                                 | 33.63                                                              | 0.513                                                                   | 5.45                                                                                                                             | 3.14 | 2.31                                                                             | 168                                                                                          | 336  |
| 3                                                          | 5.827                                 | 26 67                                                              | 0.646                                                                   | 4.32                                                                                                                             | 2.49 | 1.83                                                                             | 133                                                                                          | 267  |

| American Wire<br>Gauge (AWG) or<br>Brown & Sharpe | Diameter<br>20°C <sup>a</sup><br>[mm] | Cross-sectional<br>area at 20°C <sup>a</sup><br>[mm <sup>2</sup> ] | Resistance of<br>annealed copper<br>wire at 20°C <sup>a</sup> | Resistance of<br>annealed copper<br>wire at 20°C $^{a}$ Heat conducted along 1 m of copper wire<br>between the indicated temperatures $^{b}$ Optimum current for 1 m of<br>wire with one end at 4 K and<br>at temperature $T_{upper}$ [W][A] |          | Heat conducted along 1 m of copper wire<br>between the indicated temperatures <sup>b</sup><br>[W] |                               | for 1 m of copper<br>at 4 K and the other<br>ture $T_{upper}^{c}$ |
|---------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------|
| (B&S)                                             | [mm][mm <sup>-</sup> ]                |                                                                    | $[\Omega/km]$                                                 | 300K-4.2K                                                                                                                                                                                                                                    | 300K-76K | 76K-4.2K                                                                                          | $T_{\rm upper} = 290 {\rm K}$ | $T_{\rm upper} = 77 {\rm K}$                                      |
| 4                                                 | 5.189                                 | 21.15                                                              | 0.815                                                         | 3.43                                                                                                                                                                                                                                         | 1.98     | 1.45                                                                                              | 106                           | 212                                                               |
| 5                                                 | 4.621                                 | 16.77                                                              | 1.03                                                          | 2.72                                                                                                                                                                                                                                         | 1.57     | 1.15                                                                                              | 84                            | 168                                                               |
| 6                                                 | 4.115                                 | 13.30                                                              | 1.30                                                          | 2.15                                                                                                                                                                                                                                         | 1.24     | 0.912                                                                                             | 66                            | 133                                                               |
| 7                                                 | 3.665                                 | 10.55                                                              | 1.63                                                          | 1.71                                                                                                                                                                                                                                         | 0.985    | 0.724                                                                                             | 53                            | 106                                                               |
| 8                                                 | 3.264                                 | 8.366                                                              | 2.06                                                          | 1.36                                                                                                                                                                                                                                         | 0.781    | 0.574                                                                                             | 42                            | 84                                                                |
| 9                                                 | 2.906                                 | 6.634                                                              | 2.60                                                          | 1.08                                                                                                                                                                                                                                         | 0.620    | 0.455                                                                                             | 33                            | 66                                                                |
| 10                                                | 2.588                                 | 5.261                                                              | 3.28                                                          | 0.852                                                                                                                                                                                                                                        | 0.491    | 0.361                                                                                             | 26                            | 53                                                                |
| 11                                                | 2.305                                 | 4.172                                                              | 4.13                                                          | 0.676                                                                                                                                                                                                                                        | 0.390    | 0.286                                                                                             | 21                            | 42                                                                |
| 12                                                | 2.053                                 | 3.309                                                              | 5.21                                                          | 0.536                                                                                                                                                                                                                                        | 0.309    | 0.227                                                                                             | 16                            | 33                                                                |
| 13                                                | 1.828                                 | 2.624                                                              | 6.57                                                          | 0.425                                                                                                                                                                                                                                        | 0.245    | 0.180                                                                                             | 13                            | 26                                                                |
| 14                                                | 1.628                                 | 2.081                                                              | 8.28                                                          | 0.337                                                                                                                                                                                                                                        | 0.194    | 0.143                                                                                             | 10                            | 21                                                                |
| 15                                                | 1.450                                 | 1.650                                                              | 10.4                                                          | 0.267                                                                                                                                                                                                                                        | 0.154    | 0.113                                                                                             | 8.2                           | 16                                                                |
| 16                                                | 1.291                                 | 1.309                                                              | 13.2                                                          | 0.212                                                                                                                                                                                                                                        | 0.122    | 0.0898                                                                                            | 6.5                           | 13                                                                |
| 17                                                | 1.150                                 | 1.038                                                              | 16.6                                                          | 0.168                                                                                                                                                                                                                                        | 0.0969   | 0.0712                                                                                            | 5.2                           | 10                                                                |
| 18                                                | 1.024                                 | 0.8231                                                             | 21.0                                                          | 0.133                                                                                                                                                                                                                                        | 0.0769   | 0.0565                                                                                            | 4.1                           | 8.2                                                               |
| 19                                                | 0.9116                                | 0.6527                                                             | 26.4                                                          | 0.106                                                                                                                                                                                                                                        | 0.0610   | 0.0446                                                                                            | 3.3                           | 6.5                                                               |
| 20                                                | 0.8118                                | 0.5176                                                             | 33.3                                                          | 0.0838                                                                                                                                                                                                                                       | 0.0483   | 0.0355                                                                                            | 2.6                           | 5.2                                                               |
| 21                                                | 0.7230                                | 0.4105                                                             | 42.0                                                          | 0.0665                                                                                                                                                                                                                                       | 0.0383   | 0.0282                                                                                            | 2.0                           | 4.1                                                               |
| 22                                                | 0.6439                                | 0.3255                                                             | 53.0                                                          | 0.0527                                                                                                                                                                                                                                       | 0.0304   | 0.0223                                                                                            | 1.6                           | 3.2                                                               |
| 23                                                | 0.5733                                | 0.2582                                                             | 66.8                                                          | 0.0418                                                                                                                                                                                                                                       | 0.0241   | 0.0177                                                                                            | 1.3                           | 2.6                                                               |
| 24                                                | 0.5105                                | 0.2047                                                             | 84.2                                                          | 0.0332                                                                                                                                                                                                                                       | 0.0191   | 0.0140                                                                                            | 1.0                           | 2.0                                                               |
| 25                                                | 0.4547                                | 0.1624                                                             | 106                                                           | 0.0263                                                                                                                                                                                                                                       | 0.0152   | 0.0111                                                                                            | 0.81                          | 1.6                                                               |

| American Wire<br>Gauge (AWG) or<br>Brown & Sharpe<br>(B&S) | Diameter<br>20°C <sup>a</sup><br>[mm] | Cross-sectional<br>area at 20°C <sup>a</sup><br>[mm <sup>2</sup> ] | Resistance of<br>annealed copper<br>wire at 20°C <sup>a</sup> | Heat conducted along 1 m of copper wire<br>between the indicated temperatures <sup>b</sup><br>[W] |          | Heat conducted along 1 m of copper wire<br>between the indicated temperatures $^{b}$ [W] Optimum current for 1 m of copper<br>wire with one end at 4 K and the oth<br>at temperature $T_{upper}^{c}$ [A] |                               | for 1 m of copper<br>t 4 K and the other<br>ure $T_{upper}$ ° |
|------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|
| (1965)                                                     |                                       |                                                                    |                                                               | 300K-4.2K                                                                                         | 300K-76K | 76K–4.2K                                                                                                                                                                                                 | $T_{\rm upper} = 290 {\rm K}$ | $T_{\rm upper} = 77 {\rm K}$                                  |
| 26                                                         | 0.4049                                | 0.1288                                                             | 134                                                           | 0.0209                                                                                            | 0.0120   | 0.00884                                                                                                                                                                                                  | 0.64                          | 1.3                                                           |
| 27                                                         | 0.3606                                | 0.1021                                                             | 169                                                           | 0.0165                                                                                            | 0.00954  | 0.00700                                                                                                                                                                                                  | 0.51                          | 1.0                                                           |
| 28                                                         | 0.3211                                | 0.08098                                                            | 213                                                           | 0.0131                                                                                            | 0.00756  | 0.00556                                                                                                                                                                                                  | 0.40                          | 0.81                                                          |
| 29                                                         | 0.2859                                | 0.06422                                                            | 268                                                           | 0.0104                                                                                            | 0.00600  | 0.00440                                                                                                                                                                                                  | 0.32                          | 0.64                                                          |
| 30                                                         | 0.2548                                | 0.05093                                                            | 339                                                           | 0.00825                                                                                           | 0.00476  | 0.00349                                                                                                                                                                                                  | 0.25                          | 0.51                                                          |
| 31                                                         | 0.2268                                | 0.04039                                                            | 427                                                           | 0.00654                                                                                           | 0.00377  | 0.00277                                                                                                                                                                                                  | 0.20                          | 0.40                                                          |
| 32                                                         | 0.2019                                | 0.03203                                                            | 538                                                           | 0.00519                                                                                           | 0.00299  | 0.00220                                                                                                                                                                                                  | 0.16                          | 0.32                                                          |
| 33                                                         | 0.1798                                | 0.02540                                                            | 679                                                           | 0.00411                                                                                           | 0.00237  | 0.00174                                                                                                                                                                                                  | 0.13                          | 0.25                                                          |
| 34                                                         | 0.1601                                | 0.02014                                                            | 856                                                           | 0.00326                                                                                           | 0.00188  | 0.00138                                                                                                                                                                                                  | 0.10                          | 0.20                                                          |
| 35                                                         | 0.1426                                | 0.01597                                                            | 1080                                                          | 0.00259                                                                                           | 0.00149  | 0.00110                                                                                                                                                                                                  | 0.080                         | 0.16                                                          |
| 36                                                         | 0.1270                                | 0.01267                                                            | 1360                                                          | 0.00205                                                                                           | 0.00118  | 0.000869                                                                                                                                                                                                 | 0.063                         | 0.13                                                          |
| 37                                                         | 0.1131                                | 0.01005                                                            | 1720                                                          | 0.00163                                                                                           | 0.000939 | 0.000689                                                                                                                                                                                                 | 0.050                         | 0.10                                                          |
| 38                                                         | 0.1007                                | 0.007967                                                           | 2160                                                          | 0.00129                                                                                           | 0.000744 | 0.000546                                                                                                                                                                                                 | 0.040                         | 0.080                                                         |
| 39                                                         | 0.08969                               | 0.006318                                                           | 2730                                                          | 0.00102                                                                                           | 0.000590 | 0.000433                                                                                                                                                                                                 | 0.032                         | 0.063                                                         |
| 40 <sup>d</sup>                                            | 0.07988                               | 0.005010                                                           | 3440                                                          | 0.000812                                                                                          | 0.000468 | 0.000344                                                                                                                                                                                                 | 0.025                         | 0.050                                                         |

<sup>a</sup> Data obtained partially from calculations (see following footnotes) and partially from tabulations in the *CRC Handbook of Chemistry and Physics* (1987; 2002), CRC Press, Inc., Boca Raton, Florida; and from the *Machinery's Handbook* (2000), 26<sup>th</sup> edition, Industrial Press, New York.

<sup>b</sup> Heat conduction for a length other than 1 m is obtained by dividing the values in the table by the desired wire length (in meters). In obtaining the values for heat conduction, it was assumed that there was no gas cooling of the wire. If helium gas boil-off were used to cool the wire with maximum efficiency, the resultant heat flow would be 1/12 of the values given for an upper temperature of 300 K, and 1/4 of the values shown for 77 K. Calculations were based on the thermal conductivity integrals of electrolytic-tough-pitch (ETP) copper, Appendix A2.1. From V. Johnson (1960), National Bureau of Standards; Wright Air Development Division (WADD) Technical Report 60-56, Part II; and D. H. J. Goodall (1970), A.P.T. Division, Culham Laboratory.

<sup>c</sup> Optimum current is for steady-state operation. For wires that carry current with only a low duty cycle, the optimum current should be adjusted to a higher value because in that case the Joule heating is intermittent, whereas the heat flow down the current lead is continuous. Optimum current for a length other than 1 m is obtained by dividing the values in the table by the desired wire length (in meters). Values were calculated from Eqs. (4.1) and (4.2) in Sec. 4.9.1, which were derived by R. McFee (1959), *Rev. Sci. Instrum.* **30**, 98–102.

<sup>d</sup> For wire sizes smaller than #40 AWG, the diameter can be calculated by using a ratio of 1 : 1.123 for consecutive AWG sizes.

## Room-temperature resistivities for several common wire materials relative to copper.

These ratios can be used to obtain the resistance-per-length for wire materials other than copper by multiplying the room-temperature values given for copper in the fourth column of the above table by the ratio  $\rho_{293K}/\rho_{Cu\,293K}$ . (Calculated from Appendix A4.2 and the *CRC Handbook of Chemistry and Physics* 2002.)

| Material            | <u> </u> |
|---------------------|----------|
| Aluminum            | 1.579    |
| Brass (70%Cu-30%Zn) | 3.62     |
| Constantan          | 29       |
| Manganin            | 28       |
| Nichrome            | 64       |
| Phosphor Bronze     | 7.5      |
| Platinum            | 6.26     |
| Silver              | 0.946    |
| Tungsten            | 3.15     |

A4.1b Wire gauge: Metric and American Wire Gauge (AWG) size comparison (Secs. 4.1 and

4.2)

| - | American Wire<br>Gauge (AWG) or<br>Brown & Sharpe | Nearest common<br>metric gauge wire<br>diameter at 20°C | Metric wire<br>cross-sectional area<br>at 20°C | Resistance of<br>annealed copper<br>wire at 20°C |
|---|---------------------------------------------------|---------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
|   | (B&S)                                             | [mm]                                                    | [mm <sup>2</sup> ]                             | $[\Omega/km]$                                    |
|   |                                                   |                                                         |                                                |                                                  |
|   | 5                                                 | 4.750                                                   | 17.72                                          | 1.0                                              |
|   | 6                                                 | 4.250                                                   | 14.19                                          | 1.2                                              |
|   | 7                                                 | 3.750                                                   | 11.04                                          | 1.5                                              |
|   | 8                                                 | 3.350                                                   | 8.814                                          | 1.9                                              |
|   | 9                                                 | 2.800                                                   | 6.158                                          | 2.8                                              |
|   | 10                                                | 2.500                                                   | 4.910                                          | 3.5                                              |
|   | 11                                                | 2.240                                                   | 3.941                                          | 4.3                                              |
|   | 12                                                | 2.000                                                   | 3.142                                          | 5.4                                              |
|   | 13                                                | 1.800                                                   | 2.545                                          | 6.7                                              |
|   | 14                                                | 1.600                                                   | 2.011                                          | 8.5                                              |
|   | 15                                                | 1.400                                                   | 1.539                                          | 11.1                                             |
|   | 16                                                | 1.250                                                   | 1.227                                          | 13.9                                             |
|   | 17                                                | 1.120                                                   | 0.9852                                         | 17.4                                             |
|   | 18                                                | 1.000                                                   | 0.7854                                         | 21.8                                             |
|   | 19                                                | 0.900                                                   | 0.636                                          | 26.9                                             |
|   | 20                                                | 0.800                                                   | 0.503                                          | 34.0                                             |
|   | 21                                                | 0.710                                                   | 0.396                                          | 43.2                                             |
|   | 22                                                | 0.630                                                   | 0.312                                          | 54.8                                             |
|   | 23                                                | 0.560                                                   | 0.246                                          | 69.4                                             |
|   | 24                                                | 0.500                                                   | 0.196                                          | 87.1                                             |
|   | 25                                                | 0.450                                                   | 0.159                                          | 108                                              |
|   | 26                                                | 0.400                                                   | 0.126                                          | 136                                              |
|   | 27                                                | 0.355                                                   | 0.0990                                         | 173                                              |
|   | 28                                                | 0.315                                                   | 0.0779                                         | 219                                              |
|   | 29                                                | 0.280                                                   | 0.0616                                         | 278                                              |
|   | 30                                                | 0.250                                                   | 0.0491                                         | 348                                              |
|   | 31                                                | 0.224                                                   | 0.0394                                         | 434                                              |
|   | 32                                                | 0.200                                                   | 0.0314                                         | 544                                              |

| American Wire<br>Gauge (AWG) or<br>Brown & Sharpe | Nearest common<br>metric gauge wire<br>diameter at 20°C | Metric wire<br>cross-sectional area<br>at 20°C | Resistance of<br>annealed copper<br>wire at 20°C |
|---------------------------------------------------|---------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| (B&S)                                             | [mm]                                                    | $[mm^2]$                                       | $[\Omega/km]$                                    |
| 33                                                | 0.180                                                   | 0.0255                                         | 672                                              |
| 34                                                | 0.160                                                   | 0.0201                                         | 850                                              |
| 35                                                | 0.140                                                   | 0.0154                                         | 1110                                             |
| 36                                                | 0.125                                                   | 0.0123                                         | 1390                                             |
| 37                                                | 0.112                                                   | 0.00985                                        | 1740                                             |
| 38                                                | 0.100                                                   | 0.00785                                        | 2180                                             |
| 39                                                | 0.090                                                   | 0.0064                                         | 2700                                             |
| 40                                                | 0.080                                                   | 0.0050                                         | 3400                                             |

| Wire Material     | Chemical<br>Composition              | Resistivity<br>at 293 K<br>at 77 K<br>at 4.2 K<br>[μΩ·cm] | Melting Range                          | Coef. Thermal<br>Expansion<br>[°C <sup>-1</sup> ] | Magnetores.<br>$\Delta R/R_0$ @<br>4.2 K and 10 T<br>(perpendicular<br>to wire) <sup>d</sup> | Volume<br>Susceptibility<br>[SI]                                                                                        |
|-------------------|--------------------------------------|-----------------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Copper (ETP)      | 100 wt% Cu                           | 1.68<br>0.21<br>~0.02                                     | 1056–1083°C                            | 1.68 × 10 <sup>-5</sup><br>(20–100°C)             | 188 % <sup>f</sup>                                                                           | $3.2 \times 10^{-5}$ @R.T. <sup>b</sup><br>$2.5 \times 10^{-5}$ @4.2K <sup>b</sup>                                      |
| Constantan        | 55 wt% Cu<br>45 wt% Ni               | 49.9                                                      | 1300–1340°C <sup>°</sup>               | $1.5 \times 10^{-5}$<br>(20–100°C)                | -2.56 %                                                                                      | Ferromagnetic <sup>d</sup><br>Ferromagnetic <sup>d</sup>                                                                |
| Manganin          | 83 wt% Cu<br>13 wt% Mn<br>4 wt% Ni   | 48.2<br>45.4<br>42.9                                      | 1100–1160°C °<br>(85wt%Cu–<br>15wt%Mn) | 1.9 × 10 <sup>-5</sup><br>(20–100°C)              | -2.83 %                                                                                      | $\begin{array}{c} 0.0027 @ R.T.^{d} \\ 0.022 @ 76K^{d} \\ 0.0125 @ 4.2K^{d} \end{array}$                                |
| Nichrome          | 80 wt% Ni<br>20 wt% Cr               | 109<br>107<br>106                                         | 1400°C                                 | 1.73 × 10 <sup>-5</sup><br>(20–1000°C)            | 0.69 %                                                                                       | $\begin{array}{c} 5.2\times10^{-4} @ R.T.^{d} \\ 8.3\times10^{-4} @ 76K^{d} \\ 5.6\times10^{-3} @ 4.2K^{d} \end{array}$ |
| Phosphor Bronze A | 94.8 wt% Cu<br>5 wt% Sn<br>0.2 wt% P | 12.8<br>11.0<br>10.7                                      | 950–1050°C                             | 1.78 × 10 <sup>-5</sup><br>(20–300°C)             | 4.5 % <sup>e,g</sup>                                                                         | $\begin{array}{c} -5.2\times10^{-5} @R.T.^{d} \\ -4.7\times10^{-5} @76K^{d} \\ -3.3\times10^{-5} @4.2K^{d} \end{array}$ |

*A4.2 Physical properties of common wire materials: Composition, resistivity, melting temperature, thermal expansion, magnetoresistance, and magnetic susceptibility*<sup>a</sup> (Sec. 4.2)

<sup>a</sup> Except where otherwise cited, data were compiled from *Metals Handbook*, (1961), Vol. 1, *Properties and Selection of Materials* (1995), 8<sup>th</sup> edition, American Society for Metals, Metals Park, Ohio; *Temperature Measurement and Control*, Lake Shore Cryotronics, Inc., Westerville, Ohio; and C. A. Thompson, W. M. Manganaro, and F. R. Fickett (1990), *Cryogenic Properties of Copper*, Wall Chart, NIST, and the references cited therein.

<sup>b</sup> F. R. Fickett (1992), Adv. Cryog. Eng. (Mater.), 38B, 1191–1197.

<sup>c</sup> T. B. Massalski, ed. (1990), Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio

<sup>d</sup> M. Abrecht, A. Adare, and J. W. Ekin (2007), Rev. Sci. Inst. 78, 046104. Susceptibilities at 4.2 K were determined from magnetization vs. magnetic field data;

room-temperature and 76 K susceptibilities were calculated from the magnetization measured at H = 100 Oe, except where noted.

<sup>e</sup> The magnetoresistance of phosphor bronze varies with (trace) impurities in the wire.

<sup>f</sup> The magnetoresistance of pure copper is strongly dependent on its purity; it can be determined from a normalized "Kohler" plot, such as that shown in Fig. 5.16 of F. R. Fickett, Chapter 5 in *Materials at Low Temperatures*, R. P. Reed and A. F. Clark, eds., ASM International, Metals Park, Ohio.

<sup>g</sup> At 76 K and 10 T, the magnetoresistance of phosphor bronze is much smaller than at 4 K, decreasing to about  $\Delta R/R_0 = 0.08\%$  (Abrecht et al. 2006, footnote d).

### A4.3 Residual Resistance Ratio (RRR) of selected wiring and conductor materials (Sec. 4.2)

RRR =  $R_{293 \text{ K}}/R_{4 \text{ K}} = \rho_{293 \text{ K}}/\rho_{4 \text{ K}}$ 

RRR values of additional materials are tabulated in Appendix A3.1.

| Material                                                                                                                       | Resistivity at 293 K<br>[μΩ·cm] | Resistivity at 4 K<br>[μΩ·cm] | RRR<br>(ρ <sub>293 κ</sub> /ρ <sub>4 κ</sub> ) |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|------------------------------------------------|
| Copper<br>Electrolytic-Tough-Pitch,<br>ETP (common wire, rod,<br>and plate material)                                           | 1.68                            | ~0.015                        | ~110                                           |
| Oxygen-free copper <sup>a,b</sup><br>99.95% pure; annealed<br>~500°C for ~1 h in argon<br>or vacuum ( $\lesssim 10^{-4}$ torr) | 1.68                            | ~0.010                        | ~160                                           |
| Oxygen-free copper <sup>a</sup><br>99.95% pure; unannealed                                                                     | 1.71                            | ~0.038                        | ~45                                            |
| Copper ground strap <sup>a</sup> (1/4 inch wide flexible braid)                                                                | 1.74                            | ~0.070                        | ~25                                            |
| Silver foil <sup>a</sup><br>(rolled)                                                                                           | 1.61                            | ~0.019                        | ~85                                            |
| Aluminum 99.9995 % <sup>c</sup><br>(pure rolled foil annealed<br>350°C for 1 h)                                                | 2.65                            | ~0.0005                       | ~5000                                          |

<sup>a</sup> Measured by R. McDonough (1995), unpublished data, National Institute of Standards and Technology, Boulder, Colorado.

<sup>b</sup> See annealing information in footnote c of Appendix A3.1.

<sup>c</sup> Measured by P. Kirkpatrick (1997), unpublished data, National Institute of Standards and Technology, Boulder, Colorado.

## A4.4 Wire insulation: Thermal ratings <sup>a</sup> (Sec. 4.3)

| Wire Insulation                            | Thermal Rating |        |  |
|--------------------------------------------|----------------|--------|--|
| Polyvinyl Formal (Formvar™)                | 105 °C         | 221 °F |  |
| Tetrafluoroethylene (Teflon <sup>™</sup> ) | 200 °C         | 392 °F |  |
| Polyimide (Kapton <sup>™</sup> )           | 220 °C         | 428 °F |  |

<sup>a</sup> Data from *Temperature Measurement and Control* (2002), Sec. 3, Lake Shore Cryotronics, Inc., Westerville, Ohio.

#### A4.5 Thermal anchoring: Required wire lengths (Sec. 4.4)

Tabulated values give the tempering length required to bring the designated wire material to within 1 mK of the heat-sink temperature  $T_s$ .

|           |       |         | Temperi                      | Tempering Length for Various Wire Gauges <sup>b</sup> |                      |                     |  |  |  |
|-----------|-------|---------|------------------------------|-------------------------------------------------------|----------------------|---------------------|--|--|--|
|           |       |         |                              | [cm]                                                  |                      |                     |  |  |  |
| Material  | $T_1$ | $T_{S}$ | $0.005 \text{ mm}^2$         | $0.013 \text{ mm}^2$                                  | $0.032 \text{ mm}^2$ | $0.21 \text{ mm}^2$ |  |  |  |
|           | [K]   | [K]     | (#40 AWG) <sup>c</sup>       | (#36 AWG)                                             | (#32 AWG)            | (#24 AWG)           |  |  |  |
|           |       |         | $(\sim 0.080 \text{mm})^{d}$ | (~0.125mm)                                            | (~0.200mm)           | (~0.500mm)          |  |  |  |
|           |       |         | [cm]                         | [cm]                                                  | [cm]                 | [cm]                |  |  |  |
|           |       |         |                              |                                                       |                      |                     |  |  |  |
| Copper    | 300   | 80      | 1.9                          | 3.3                                                   | 5.7                  | 16.0                |  |  |  |
|           | 300   | 4       | 8.0                          | 13.8                                                  | 23.3                 | 68.8                |  |  |  |
| Phosphor- | 300   | 80      | 0.4                          | 0.6                                                   | 1.1                  | 3.2                 |  |  |  |
| Bronze    | 300   | 4       | 0.4                          | 0.7                                                   | 1.3                  | 3.8                 |  |  |  |
| Manganin  | 300   | 80      | 0.2                          | 0.4                                                   | 0.4                  | 2.1                 |  |  |  |
|           | 300   | 4       | 0.2                          | 0.4                                                   | 0.7                  | 2.0                 |  |  |  |
| Stainless | 300   | 80      | 0.2                          | 0.3                                                   | 0.6                  | 1.7                 |  |  |  |
| Steel 304 | 300   | 4       | 0.2                          | 0.3                                                   | 0.5                  | 1.4                 |  |  |  |

 $T_1$  is the temperature where the lead was last thermally anchored.<sup>a</sup>

- <sup>a</sup> From D. S. Holmes and S. S. Courts (1998), Chapter 4 in *Handbook of Cryogenic Engineering*, ed. J. G. Weisend II, Taylor & Francis, Philadelphia, Pennsylvania; based on an earlier calculation by J. G. Hust (1970), *Rev. Sci. Instrum.* 41, 622–624. (The difference in values between the earlier and later evaluations for copper stems from the use of mean thermal conductivity values by Hust and thermal-conductivity integrals by Holmes and Courts.)
- <sup>b</sup> The calculated results pertain to wires with thin, well bonded insulation such as Formvar or polyimide (not Nylon<sup>TM</sup> or Teflon<sup>TM</sup> sleeve insulation) in a vacuum environment (i.e., not cooled by surrounding gas). The insulation-plus-adhesive layer attaching the wire to the heat sink is assumed to have a thickness about equal to the wire diameter and a thermal conductivity typical of varnish, namely 0.01, 0.02, and 0.05 W/(m•K) at 4 K, 20 K, and 78 K, respectively. The length of untempered conductor between  $T_1$  and  $T_s$  is assumed to be 25 cm; however, increasing this length by a factor of 10 shortens the required tempering length by a factor of less than two.
- <sup>c</sup> American Wire Gauge (Appendix A4.1a).

<sup>d</sup> Nearest metric wire size (Appendix A4.1b).

A4.6a Thermoelectric voltages of some elements relative to copper  $^{a}$  (Sec. 4.6)

Tabulated thermoelectric voltages are *relative to copper* with the reference junction at 0  $^{\circ}$ C.

A positive sign means that, in a simple thermoelectric circuit, the resultant voltage direction produces a current from the material to the copper at the reference junction (0  $^{\circ}$ C).

Values have been *ordered by their absolute magnitude* at -100 °C or, when not available, at +100 °C. Thus, the higher a material's position in the table, the closer its thermoelectric voltage matches that of copper.

| Element    | -200 °C<br>[mV] | -100 °C<br>[mV] | 0 °C<br>[mV] | +100 °C<br>[mV] | +200 °C<br>[mV] |
|------------|-----------------|-----------------|--------------|-----------------|-----------------|
|            |                 |                 |              |                 |                 |
| Gold       | -0.02           | -0.02           | 0            | +0.02           | +0.01           |
| Silver     | -0.02           | -0.02           | 0            | -0.02           | -0.06           |
| Iridium    | -0.06           | +0.02           | 0            | -0.10           | -0.34           |
| Rhodium    | -0.01           | +0.03           | 0            | -0.06           | -0.22           |
| Carbon     | _               | _               | 0            | -0.06           | -0.29           |
| Indium     | _               | _               | 0            | -0.07           | _               |
| Zinc       | +0.12           | +0.04           | 0            | 0.00            | +0.06           |
| Cadmium    | +0.15           | +0.06           | 0            | +0.14           | +0.52           |
| Thallium   | _               | _               | 0            | -0.18           | -0.53           |
| Tungsten   | +0.62           | +0.22           | 0            | +0.36           | +0.79           |
| Lead       | +0.43           | +0.23           | 0            | -0.32           | -0.74           |
| Cesium     | +0.41           | +0.24           | 0            | _               | _               |
| Tin        | +0.45           | +0.25           | 0            | -0.34           | -0.76           |
| Cerium     | _               | _               | 0            | +0.38           | +0.63           |
| Tantalum   | +0.40           | +0.27           | 0            | -0.43           | -0.90           |
| Magnesium  | +0.56           | +0.28           | 0            | -0.32           | -0.73           |
| Platinum   | +0.19           | +0.37           | 0            | -0.76           | -1.83           |
| Aluminum   | +0.64           | +0.43           | 0            | -0.34           | -0.77           |
| Molybdenum | _               | _               | 0            | +0.69           | +1.36           |
| Thorium    | _               | _               | 0            | -0.89           | -2.09           |
| Lithium    | -0.93           | +0.63           | 0            | +0.06           | _               |
| Sodium     | +1.19           | +0.66           | 0            | _               | _               |
| Rubidium   | +1.28           | +0.83           | 0            |                 | _               |

| Element   | -200 °C<br>[mV] | -100 °C<br>[mV] | 0 °C<br>[mV] | +100 °C<br>[mV] | +200 °C<br>[mV] |
|-----------|-----------------|-----------------|--------------|-----------------|-----------------|
| Calcium   |                 |                 | 0            | -1.27           | -2.96           |
| Palladium | +1.00           | +0.85           | 0            | -1.33           | -3.06           |
| Mercury   |                 |                 | 0            | -1.36           | -3.16           |
| Potassium | +1.80           | +1.15           | 0            |                 |                 |
| Cobalt    |                 |                 | 0            | -2.09           | -4.91           |
| Nickel    | +2.47           | +1.59           | 0            | -2.24           | -4.93           |
| Antimony  |                 |                 | 0            | +4.13           | +8.31           |
| Bismuth   | +12.58          | +7.91           | 0            | -8.10           | -15.40          |
| Germanium | -45.81          | -26.25          | 0            | +33.14          | +70.57          |
| Silicon   | +63.32          | +37.54          | 0            | -42.32          | -82.40          |

<sup>a</sup> Calculated from thermal emf data compiled in the *American Institute. of Physics Handbook* (1972), 3<sup>rd</sup> edition, Chapter 4, McGraw–Hill.

A4.6b Thermoelectric voltages of selected technical materials relative to copper<sup>a</sup> (Sec. 4.6)

Tabulated thermoelectric voltages are *relative to copper* with the reference junction at 0  $^{\circ}$ C.

A positive sign means that in a simple thermoelectric circuit the resultant voltage direction produces a current from the material to the copper at the reference junction (0  $^{\circ}$ C).

Values have been *ordered by their absolute magnitude* at +100 °C. The higher a material's position in the table, the closer its thermoelectric voltage matches that of copper.

| Technical Material      | -200 °C<br>[mV] | -100 °C<br>[mV] | 0 °C<br>[mV] | +100 °C<br>[mV] | +200 °C<br>[mV] |
|-------------------------|-----------------|-----------------|--------------|-----------------|-----------------|
|                         |                 |                 |              |                 |                 |
| Silver Coin             | —               | —               | 0            | +0.04           | +0.07           |
| (90 Ag-10 Cu)           |                 |                 |              |                 |                 |
| 60 Ni–24 Fe–16 Cr       | —               | —               | 0            | -0.09           | +0.18           |
| Copper-Beryllium        |                 | —               | 0            | -0.09           | -0.21           |
| Manganin                | _               | —               | 0            | -0.15           | -0.28           |
| Yellow Brass            |                 | _               | 0            | -0.16           | -0.34           |
| Copper Coin             | _               | _               | 0            | -0.16           | -0.35           |
| (95 Cu-4 Sn-1 Zn)       |                 |                 |              |                 |                 |
| Phosphor Bronze         | _               | _               | 0            | -0.21           | -0.49           |
| Solder (50 Sn-50 Pb)    | —               | _               | 0            | -0.30           | _               |
| Solder (96.5 Sn-3.5 Ag) | —               | _               | 0            | -0.31           | _               |
| 18-8 Stainless Steel    | _               | _               | 0            | -0.32           | -0.79           |
| 80 Ni–20 Cr             | —               | _               | 0            | +0.38           | +0.79           |
| Spring Steel            | —               | _               | 0            | +0.56           | +0.80           |
| Gold-Chromium           |                 | —               | 0            | -0.93           | -2.15           |
| Iron                    | -2.73           | -1.47           | 0            | +1.13           | +1.71           |
| Alumel                  | +2.58           | +1.66           | 0            | -2.05           | -4.00           |
| Chromel P               | -3.17           | -1.83           | 0            | +2.05           | +4.13           |
| Nickel Coin             |                 |                 | 0            | -3.52           | -7.84           |
| (75 Cu-25 Ni)           |                 |                 |              |                 |                 |
| Constantan              | +5.54           | +3.35           | 0            | -4.27           | -9.28           |

<sup>a</sup> Calculated from thermal emf data compiled in the *American Institute of Physics Handbook* (1972), 3<sup>rd</sup> edition, Chapter 4, McGraw–Hill.

#### A4.7 Thermal conductivity of YBCO coated conductors (Sec. 4.10)

Thermal conductivity values are tabulated separately for each of the major component materials of YBCO coated conductors. For any particular YBCO conductor, the total thermal conductivity  $\lambda_{total}$  of the composite conductor is the sum of the contribution of each component  $\lambda_i$  weighted by its fractional cross-sectional area. Thus, for tape conductors

 $\lambda_{\text{total}} = \sum (d_i/D) \lambda_i$ ,

where  $d_i$  is the layer thickness of the i<sup>th</sup> component and D is the total thickness of the tape.

| Material                                                                                                                                               | 20 K<br>[W/(m·K)]                     | 50 K <sup>a</sup><br>[W/(m·K)] | 90 K <sup>a</sup><br>[W/(m·K)] | 110 K<br>[W/(m·K)] | 295 K<br>[W/(m·K)] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|--------------------------------|--------------------|--------------------|
| YBCO( <i>a</i> – <i>b</i> ) 123 phase <sup>b</sup><br>(Calc. from melt-textured data)                                                                  | 14                                    | 27                             | 22                             | 21                 | ~18                |
| YBCO(c) 123 phase <sup>b</sup><br>(Calc. from melt-textured data)<br>$(\lambda_{a-b}/\lambda_c \approx 6.3)$                                           | 3.5                                   | 4.4                            | 3.2                            | 3.0                | ~2.8               |
| YBCO( $a$ - $b$ ) 123 + 40% 211 phase <sup>b</sup> melt textured                                                                                       | 10                                    | 19                             | 16                             | 15                 | ~14                |
| YBCO <sup>c</sup><br>sintered                                                                                                                          | 5                                     | 8                              | 5                              | 5                  | 5                  |
| Ag <sup>d</sup>                                                                                                                                        | depends on<br>Ag purity<br>(Sec. 2.2) | 1180                           | 620                            | 560                | 450                |
| Cu (RRR = 100) <sup>e</sup>                                                                                                                            | 2430                                  | 1220                           | 497                            | 452                | 397                |
| Inconel 625 <sup>f</sup><br>$\lambda = 24.7992 \times 10^{-6} \text{ T}^2 + 1.989348$<br>$\times 10^{-2} \text{ T} + 7.899798$<br>(valid 116 K-1255 K) |                                       |                                |                                | 7.4                | 9.8                |
| Hastelloy C-276 <sup>f</sup><br>UNS N10276<br>$\lambda = 3.565928 \times 10^{-6} \text{ T}^2 +$                                                        |                                       |                                |                                | 7.0<br>(100 K)     | 10                 |

*Thermal conductivity*  $[W/(m \cdot K)]$ 

1.349819 × 10<sup>-2</sup> T + 5.726708 (valid 105 K–811 K)

Nichrome <sup>f</sup>

UNS N06003 (77.3%Ni, 21%Cr)  $\lambda = 2.099567 \times 10^{-6} T^2 + 1.480732 \times 10^{-2} T + 8.265973$ (valid 273 K–1073 K)

- <sup>a</sup> The abrupt rise in thermal conductivity below  $T_c$  is due to condensation of electrons into superconducting pairs, eliminating them as scatterers of phonons, and thus enhancing the dominant phonon contribution to the thermal conductivity.
- <sup>b</sup> M. Ikebe, H. Fujishiro, T. Naito, K. Noto, S. Kohayashi, and S. Yoshizawa (1994), Cryogenics 34, 57-61.
- <sup>c</sup> A. Jezowski, J. Mucha, K. Rafalowicz, J. Stepien–Damm, C. Sulkowski, E. Trojnar, A. J. Zaleski, and J. Klamut (1987), *Phys. Lett. A* **122**, 431–433.
- <sup>d</sup> Calculated from the resistivity of silver (Appendix A6.5a) by using the Wiedemann–Franz Law (Sec. 2.2) for electronic thermal conduction ( $\lambda = L_N T/\rho$ , where  $L_N = 2.44 \times 10^{-8} \text{ V}^2/\text{K}^2$ ).
- <sup>e</sup> Cryogenic Materials Properties Program CD, Release B-01 (June 2001), Cryogenic Information Center, 5445 Conestoga Ct., Ste. 2C, Boulder, Colorado 80301-2724; Ph. (303) 442-0425, Fax (303) 443-1821.
- <sup>f</sup> R. Radebaugh et al. (2003), <u>http://www.cryogenics.nist.gov/</u> and the references listed therein.

#### A5. Temperature measurement tables and controller tuning (ref. Chapter 5)

#### A5.1 Vapor pressure vs. temperature (ITS-90) for cryogenic liquids<sup>a</sup> (Sections 5.1.6 and 5.4.1)

Values are tabulated from 200 kPa (~2 atmospheres) down to the triple point (i.e., the solidification temperature). A table of triple points follows the vapor-pressure table. Atmospheric pressure is 101.325 kPa, corresponding to 760 mm Hg at 0 °C and standard gravity.

*Stratification*: Because of temperature stratification within the cryogenic liquid, these vapor pressure data are useful when lowering the temperature of a cryogenic liquid (pumping on cryogenic bath), but not when raising the temperature (pressurizing the bath). In the latter case, the bottom of the bath is much colder than the surface unless a resistive heater is used to establish thermal equilibrium throughout the depth of the liquid. This can take a half hour or more depending on the heater power. Further information and methods to ensure accurate temperature measurements in cryogenic liquids are given in Secs. 1.2.1 and 5.4.1. The techniques to minimize temperature stratification in the cryogen liquid are particularly important.

*Hydrostatic pressure head*: Even when pumping on cryogenic fluids, be aware that after reaching a given pressure, the temperature at the sample depth in a static bath can increase slowly from the hydrostatic pressure of liquid above the sample. If there is a lot of turbulent mixing of the cryogenic liquid, such as from bubbles that occur during pumping or from a relatively large steady-state heat leak into the bath, the error is minimal. However, if the liquid is static for a while (tens of minutes or more), the temperature at the sample location beneath the liquid surface can rise.

This hydrostatic pressure-head correction can be significant, especially for the case of the more dense cryogens, such as liquid nitrogen. The correction is given by  $\Delta P = \delta h$ , where  $\Delta P$  is the hydrostatic pressure increase,  $\delta$  is the mass density of the cryogenic liquid, and *h* is the height of liquid above the sample. From the cryogen mass densities tabulated in Appendix A1.5 and the SI conversion factors in Appendix A1.3, we find that the pressure increase amounts to about 1.22 kPa at a depth of 1 m in liquid helium, and about 7.90 kPa at the same depth in liquid nitrogen. At atmospheric pressure, for example, this corresponds to a temperature correction of +13 mK in liquid helium, and a correction of +536 mK in liquid nitrogen. The temperature correction increases at lower bath pressures. Thus, for approximate temperature measurement, vapor-pressure data are fine, but for accuracies better than those just noted, it's safest to use a cryogenic thermometer in close thermal proximity to the sample (Sec. 5.3.1).

Note that neither of these errors (stratification or pressure head) occurs in *superfluid* helium (i.e., at temperatures below the dashed line in the <sup>4</sup>He column below). Superfluid helium has an extremely high thermal conductivity (see Sec. 1.2.2) and thus, in this case, vapor-pressure data serve to determine sample temperature very accurately.

An extensive tabulation of additional physical properties of cryogenic liquids is given in Appendix A1.5.

| 1 1               |                                     | 1 5                                 |                                                         | 1                      |                                    |                        |                                    |                         |
|-------------------|-------------------------------------|-------------------------------------|---------------------------------------------------------|------------------------|------------------------------------|------------------------|------------------------------------|-------------------------|
| Pressure<br>[kPa] | <sup>3</sup> He <sup>b</sup><br>[K] | <sup>4</sup> He <sup>c</sup><br>[K] | Para <sup>*</sup><br>H <sub>2</sub> <sup>d</sup><br>[K] | Ne <sup>e</sup><br>[K] | N <sub>2</sub> <sup>f</sup><br>[K] | Ar <sup>h</sup><br>[K] | O <sub>2</sub> <sup>i</sup><br>[K] | CH4 <sup>j</sup><br>[K] |
| 200               |                                     | 5 036                               | 22 805                                                  | 20 558                 | 83 626                             | 94 290                 | 97 245                             | 120 622                 |
| 100               |                                     | 4 070                               | 22.805                                                  | 29.550                 | 83.020                             | 02 722                 | 06 672                             | 110.022                 |
| 190               |                                     | 4.970                               | 22.390                                                  | 29.557                 | 03.113                             | 93.722                 | 90.072                             | 119.094                 |
| 170               |                                     | 4.901                               | 22.379                                                  | 29.140                 | 82.030                             | 95.150                 | 90.077                             | 119.157                 |
| 170               |                                     | 4.029                               | 22.133                                                  | 28.951                 | 81.451                             | 92.314                 | 93.434                             | 117.521                 |
| 150               |                                     | 4.734                               | 21.910                                                  | 20.703                 | 01.431                             | 91.009                 | 94.005                             | 117.521                 |
| 130               |                                     | 4.070                               | 21.072                                                  | 28.400                 | 80.843                             | 91.194                 | 94.125                             | 115.744                 |
| 140               |                                     | 4.394                               | 21.415                                                  | 28.210                 | 80.207                             | 90.485                 | 93.400                             | 113.744                 |
| 130               |                                     | 4.507                               | 21.142                                                  | 27.952                 | 79.533                             | 89.732                 | 92.649                             | 114.782                 |
| 120               | 2.260                               | 4.416                               | 20.855                                                  | 27.672                 | /8.819                             | 88.936                 | 91.845                             | 113.762                 |
| 110               | 3.269                               | 4.319                               | 20.550                                                  | 27.376                 | /8.059                             | 88.087                 | 90.989                             | 112.674                 |
| 105               | 3.224                               | 4.269                               | 20.389                                                  | 27.219                 | //.659                             | 87.641                 | 90.538                             | 112.102                 |
| 101.325           | 3.191                               | 4.230                               | 20.268                                                  | 27.100                 | 77.355                             | 87.302                 | 90.196                             | 111.667                 |
| 100               | 3.178                               | 4.216                               | 20.224                                                  | 27.057                 | 77.244                             | 87.178                 | 90.070                             | 111.508                 |
| 95                | 3.130                               | 4.162                               | 20.053                                                  | 26.888                 | 76.812                             | 86.696                 | 89.584                             | 110.890                 |
| 90                | 3.080                               | 4.106                               | 19.875                                                  | 26.713                 | 76.363                             | 86.195                 | 89.077                             | 110.248                 |
| 85                | 3.028                               | 4.048                               | 19.689                                                  | 26.530                 | 75.895                             | 85.672                 | 88.549                             | 109.576                 |
| 80                | 2.974                               | 3.988                               | 19.496                                                  | 26.339                 | 75.405                             | 85.124                 | 87.995                             | 108.874                 |
| 75                | 2.918                               | 3.925                               | 19.293                                                  | 26.138                 | 74.891                             | 84.550                 | 87.414                             | 108.137                 |
| 70                | 2.859                               | 3.859                               | 19.081                                                  | 25.927                 | 74.349                             | 83.945                 | 86.802                             | 107.360                 |
| 65                | 2.797                               | 3.790                               | 18.857                                                  | 25.704                 | 73.777                             |                        | 86.155                             | 106.540                 |
| 60                | 2.732                               | 3.717                               | 18.620                                                  | 25.466                 | 73.170                             |                        | 85.467                             | 105.668                 |
| 58                | 2.705                               | 3.687                               | 18.522                                                  | 25.367                 | 72.916                             |                        | 85.180                             | 105.303                 |
| 56                | 2.677                               | 3.656                               | 18.421                                                  | 25.266                 | 72.655                             |                        | 84.884                             | 104.929                 |
| 54                | 2.649                               | 3.624                               | 18.317                                                  | 25.162                 | 72.387                             |                        | 84.580                             | 104.543                 |
| 52                | 2.620                               | 3.591                               | 18.211                                                  | 25.054                 | 72.111                             |                        | 84.268                             | 104.147                 |
| 50                | 2.590                               | 3.558                               | 18.101                                                  | 24.944                 | 71.826                             |                        | 83.945                             | 103.738                 |
| 48                | 2.559                               | 3.524                               | 17.988                                                  | 24.830                 | 71.533                             |                        | 83.612                             | 103.316                 |
| 46                | 2.528                               | 3.489                               | 17.871                                                  | 24.712                 | 71.230                             |                        | 83.268                             | 102.880                 |
| 44                | 2.495                               | 3.452                               | 17.750                                                  | 24.590                 | 70.916                             |                        | 82.912                             | 102.429                 |

*Vapor pressure vs. temperature for cryogenic liquids* 

| Pressure | <sup>3</sup> He <sup>b</sup> | <sup>4</sup> He <sup>c</sup> | Para <sup>*</sup><br>$H_2^d$ | Ne <sup>e</sup> | N <sub>2</sub> <sup>f</sup> | Ar <sup>h</sup> | O <sub>2</sub> <sup>i</sup> | CH <sub>4</sub> <sup>j</sup> |
|----------|------------------------------|------------------------------|------------------------------|-----------------|-----------------------------|-----------------|-----------------------------|------------------------------|
| [kPa]    | [K]                          | [K]                          | [K]                          | [K]             | [K]                         | [K]             |                             | [K]                          |
| 42       | 2.462                        | 3.415                        | 17.627                       |                 | 70.591                      |                 | 82.543                      | 101.962                      |
| 40       | 2.427                        | 3.377                        | 17.498                       |                 | 70.254                      |                 | 82.160                      | 101.476                      |
| 38       | 2.392                        | 3.337                        | 17.364                       |                 | 69.903                      |                 | 81.762                      | 100.971                      |
| 36       | 2.355                        | 3.295                        | 17.226                       |                 | 69.537                      |                 | 81.346                      | 100.445                      |
| 34       | 2.317                        | 3.252                        | 17.081                       |                 | 69.155                      |                 | 80.912                      | 99.895                       |
| 32       | 2.277                        | 3.208                        | 16.929                       |                 | 68.755                      |                 | 80.456                      | 99.318                       |
| 30       | 2.236                        | 3.161                        | 16.770                       |                 | 68.334                      |                 | 79.978                      | 98.712                       |
| 29       | 2.214                        | 3.137                        | 16.689                       |                 | 68.116                      |                 | 79.729                      | 98.397                       |
| 28       | 2.193                        | 3.112                        | 16.604                       |                 | 67.891                      |                 | 79.473                      | 98.073                       |
| 27       | 2.170                        | 3.087                        | 16.517                       |                 | 67.660                      |                 | 79.210                      | 97.740                       |
| 26       | 2.147                        | 3.061                        | 16.428                       |                 | 67.422                      |                 | 78.938                      | 97.396                       |
| 25       | 2.124                        | 3.035                        | 16.336                       |                 | 67.177                      |                 | 78.659                      | 97.042                       |
| 24       | 2.100                        | 3.008                        | 16.243                       |                 | 66.923                      |                 | 78.370                      | 96.677                       |
| 23       | 2.075                        | 2.979                        | 16.145                       |                 | 66.661                      |                 | 78.071                      | 96.299                       |
| 22       | 2.049                        | 2.951                        | 16.044                       |                 | 66.390                      |                 | 77.762                      | 95.908                       |
| 21       | 2.023                        | 2.921                        | 15.940                       |                 | 66.109                      |                 | 77.441                      | 95.502                       |
| 20       | 1.996                        | 2.890                        | 15.832                       |                 | 65.817                      |                 | 77.108                      | 95.080                       |
| 19       | 1.968                        | 2.858                        | 15.719                       |                 | 65.513                      |                 | 76.761                      | 94.641                       |
| 18       | 1.939                        | 2.825                        | 15.602                       |                 | 65.196                      |                 | 76.399                      | 94.183                       |
| 17       | 1.909                        | 2.791                        | 15.481                       |                 | 64.864                      |                 | 76.020                      | 93.704                       |
| 16       | 1.878                        | 2.755                        | 15.354                       |                 | 64.516                      |                 | 75.623                      | 93.201                       |
| 15       | 1.846                        | 2.718                        | 15.220                       |                 | 64.151                      |                 | 75.205                      | 92.673                       |
| 14       | 1.812                        | 2.679                        | 15.080                       |                 | 63.765                      |                 | 74.763                      | 92.115                       |
| 13       | 1.776                        | 2.638                        | 14.931                       |                 | 63.356                      |                 | 74.296                      | 91.523                       |
| 12       | 1.739                        | 2.594                        | 14.773                       |                 |                             |                 | 73.798                      | 90.894                       |
| 11       | 1.699                        | 2.549                        | 14.605                       |                 |                             |                 | 73.265                      |                              |
| 10       | 1.658                        | 2.500                        | 14.424                       |                 |                             |                 | 72.690                      |                              |
| 9        | 1.613                        | 2.448                        | 14.230                       |                 |                             |                 | 72.067                      |                              |
| 8        | 1.565                        | 2.392                        | 14.018                       |                 |                             |                 | 71.383                      |                              |
| 7        | 1.513                        | 2.331                        |                              |                 |                             |                 | 70.625                      |                              |
| 6.5      | 1.485                        | 2.298                        |                              |                 |                             |                 | 70.213                      |                              |
| 6        | 1.455                        | 2.263                        |                              |                 |                             |                 | 69.773                      |                              |
| 5.5      | 1.424                        | 2.227                        |                              |                 |                             |                 | 69.301                      |                              |
| 4        | 1.318                        | 2.087                        |                              |                 |                             |                 | 67.633                      |                              |

| Pressure<br>[kPa] | <sup>3</sup> He <sup>b</sup><br>[K] | <sup>4</sup> He <sup>c</sup><br>[K] | $Para^{*}$ $H_{2}^{d}$ [K] | Ne <sup>e</sup><br>[K] | N <sub>2</sub> <sup>f</sup><br>[K] | Ar <sup>h</sup><br>[K] | O <sub>2</sub> <sup>i</sup><br>[K] | CH <sub>4</sub> <sup>j</sup><br>[K] |
|-------------------|-------------------------------------|-------------------------------------|----------------------------|------------------------|------------------------------------|------------------------|------------------------------------|-------------------------------------|
| 3.5               | 1.277                               | 2.039                               |                            |                        |                                    |                        | 66.960                             |                                     |
| 3.0               | 1.231                               | 1.986                               |                            |                        |                                    |                        | 66.201                             |                                     |
| 2.5               | 1.181                               | 1.926                               |                            |                        |                                    |                        | 65.327                             |                                     |
| 2.0               | 1.123                               | 1.858                               |                            |                        |                                    |                        | 64.290                             |                                     |
| 1.8               | 1.097                               | 1.827                               |                            |                        |                                    |                        | 63.814                             |                                     |
| 1.6               | 1.068                               | 1.793                               |                            |                        |                                    |                        | 63.290                             |                                     |
| 1.4               | 1.038                               | 1.757                               |                            |                        |                                    |                        | 62.707                             |                                     |
| 1.2               | 1.004                               | 1.716                               |                            |                        |                                    |                        | 62.049                             |                                     |
| 1.0               | 0.966                               | 1.670                               |                            |                        |                                    |                        | 61.289                             |                                     |
| 0.9               | 0.946                               | 1.644                               |                            |                        |                                    |                        | 60.859                             |                                     |
| 0.8               | 0.923                               | 1.616                               |                            |                        |                                    |                        | 60.387                             |                                     |
| 0.7               | 0.898                               | 1.585                               |                            |                        |                                    |                        | 59.860                             |                                     |
| 0.6               | 0.871                               | 1.551                               |                            |                        |                                    |                        | 59.266                             |                                     |
| 0.5               | 0.841                               | 1.512                               |                            |                        |                                    |                        | 58.578                             |                                     |
| 0.45              | 0.824                               | 1.490                               |                            |                        |                                    |                        | 58.188                             |                                     |
| 0.4               | 0.806                               | 1.467                               |                            |                        |                                    |                        | 57.760                             |                                     |
| 0.35              | 0.786                               | 1.441                               |                            |                        |                                    |                        | 57.281                             |                                     |
| 0.3               | 0.763                               | 1.411                               |                            |                        |                                    |                        | 56.741                             |                                     |
| 0.25              | 0.739                               | 1.378                               |                            |                        |                                    |                        | 56.115                             |                                     |
| 0.2               | 0.710                               | 1.339                               |                            |                        |                                    |                        | 55.368                             |                                     |
| 0.15              | 0.675                               | 1.292                               |                            |                        |                                    |                        | 54.439                             |                                     |
| 0.1               | 0.631                               | 1.230                               |                            |                        |                                    |                        |                                    |                                     |
| 0.09              | 0.620                               | 1.214                               |                            |                        |                                    |                        |                                    |                                     |
| 0.08              | 0.609                               | 1.197                               |                            |                        |                                    |                        |                                    |                                     |
| 0.07              | 0.596                               | 1.179                               |                            |                        |                                    |                        |                                    |                                     |
| 0.06              | 0.582                               | 1.158                               |                            |                        |                                    |                        |                                    |                                     |
| 0.05              | 0.566                               | 1.134                               |                            |                        |                                    |                        |                                    |                                     |
| 0.04              | 0.547                               | 1.106                               |                            |                        |                                    |                        |                                    |                                     |
| 0.03              | 0.524                               | 1.072                               |                            |                        |                                    |                        |                                    |                                     |
| 0.02              |                                     | 1.026                               |                            |                        |                                    |                        |                                    |                                     |
| 0.01              |                                     | 0.956                               |                            |                        |                                    |                        |                                    |                                     |
| 0.008             |                                     | 0.935                               |                            |                        |                                    |                        |                                    |                                     |
| 0.006             |                                     | 0.910                               |                            |                        |                                    |                        |                                    |                                     |
| 0.004             |                                     | 0.875                               |                            |                        |                                    |                        |                                    |                                     |

| Pressure<br>[kPa] | <sup>3</sup> He <sup>b</sup><br>[K] | <sup>4</sup> He <sup>c</sup><br>[K] | Para <sup>*</sup><br>H <sub>2</sub> <sup>d</sup><br>[K] | Ne <sup>e</sup><br>[K] | ${{ m N_2}}^{ m f}$ [K] | Ar <sup>h</sup><br>[K] | $O_2^{i}$ [K] | CH <sub>4</sub> <sup>j</sup><br>[K] |
|-------------------|-------------------------------------|-------------------------------------|---------------------------------------------------------|------------------------|-------------------------|------------------------|---------------|-------------------------------------|
| 0.002             |                                     | 0.822                               |                                                         |                        |                         |                        |               |                                     |

<sup>†</sup> Atmospheric pressure

Reference are listed after next table.

|                                                        | Boiling Temperature (ITS-90) | Triple Point                |                   |  |  |
|--------------------------------------------------------|------------------------------|-----------------------------|-------------------|--|--|
| Cryogenic Liquid 1 atm (101.325 kPa, 760 mm Hg)<br>[K] |                              | Temperature (ITS-90)<br>[K] | Pressure<br>[kPa] |  |  |
| <sup>3</sup> He <sup>b</sup>                           | 3.1905                       | _                           |                   |  |  |
| <sup>4</sup> He <sup>c</sup>                           | 4.230                        | $2.1768^{\dagger}$          | 4.856             |  |  |
| $H_2$ (para) <sup>d, *</sup>                           | 20.268                       | 13.80                       | 7.04              |  |  |
| Neon <sup>e</sup>                                      | 27.100                       | 24.557                      | 43.46             |  |  |
| Nitrogen <sup>f</sup>                                  | 77.355                       | 63.151                      | 12.52             |  |  |
| Liquid Air <sup>g</sup>                                | 78.903                       | 59.75 <sup>‡</sup>          | 5.26              |  |  |
| Argon <sup>h</sup>                                     | 87.302                       | 83.806                      | 68.89             |  |  |
| Oxygen <sup>i</sup>                                    | 90.196                       | 54.359                      | 0.146             |  |  |
| Methane <sup>j</sup>                                   | 111.67                       | 90.694                      | 11.70             |  |  |

Boiling temperature and triple points for cryogenic liquids<sup>*a*</sup>

Footnotes and references for both of the above tables:

- \* Hydrogen can exist in two molecular forms: higher-energy orthohydrogen (nuclear spins aligned) and lower-energy parahydrogen (nuclear spins opposed). The equilibrium ratio is determined by temperature: at room temperature and above, hydrogen consists of about 25 % para and 75 % ortho (so-called "normal" hydrogen), but at the atmospheric boiling temperature of liquid hydrogen (20.27 K) and below, the equilibrium shifts almost completely to parahydrogen (99.79 % para and 0.21 % ortho at 20.27 K). The boiling temperatures of parahydrogen and normal hydrogen are nearly equal.
- <sup>†</sup> Superfluid  $\lambda$  point
- <sup>‡</sup> Solidification point
- <sup>a</sup> Data were evaluated by E. W. Lemmon, (2003) from equations of state given in references c through j; National Institute of Standards and Technology, Boulder, Colorado, personal communication.
- <sup>b</sup> E. W. Lemmon (2002), National Institute of Standards and Technology, Boulder, Colorado, personal communication.
- <sup>c</sup> R. D. McCarty and V. D. Arp (1990), Adv. Cryog. Eng. 35, 1465–1475.
- <sup>d</sup> B. A. Younglove (1982), J. Phys. Chem. Ref. Data 11, Suppl. 1, 1–11.
- <sup>e</sup> R. S. Katti, R. T. Jacobsen, R. B. Stewart, and M. Jahangiri (1986), Adv. Cryog. Eng. (Mater.) 31, 1189–1197.
- <sup>f</sup> R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki (2000), *J. Phys. Chem. Ref. Data* **29**(6), 1361–1433.
- <sup>g</sup> E. W. Lemmon, R. T. Jacobsen, S. G. Penoncello, and D. G. Friend (2000), J. Phys. Chem. Ref. Data 29(3), 1-54.
- <sup>h</sup> C. Tegeler, R. Span, and W. Wagner (1999), J. Phys. Chem. Ref. Data 28(3), 779-850.
- <sup>i</sup> R. Schmidt and W. Wagner (1985), *Fluid Phase Equilibria* **19**,175–200.
- <sup>j</sup> U. Setzmann and W. Wagner (1991), J. Phys. Chem. Ref. Data **20**(6), 1061–1151.

## A5.2 Properties of cryogenic thermometers (~1 K to ~300 K)<sup>*a*</sup> (Sections 5.1.2, 5.1.3, and 5.5)

This table is designed for use in conjunction with the reference compendium, Sec. 5.5, where comments on the properties and practical use of each type of thermometer are given (in corresponding order).

| Sensor Type                                                     | Temp. Range                                                                          | Accuracy <sup>*</sup><br>(± value)                                                                                                                               | Reproducibility <sup>†</sup><br>(± value)                                        | Long-term<br>Calibration Drift   | Inter-<br>change-<br>ability <sup>‡</sup> | Magnetic<br>Field Use                                                                                           | Best Use                                                                                                                                 | Cost                                                                  |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Metallic Resistance Sensors (positive temperature coefficient): |                                                                                      |                                                                                                                                                                  |                                                                                  |                                  |                                           |                                                                                                                 |                                                                                                                                          |                                                                       |  |  |
| Platinum                                                        | 77 K to 800 K<br>With impurity<br>correction:<br>20 K to 77 K<br>(Appendix<br>A5.3b) | Without indiv.<br>calib:<br>0.6 K at 70 K<br>0.2 K at 300 K<br>With indiv.<br>calibration:<br>20 mK at 77 K<br>35 mK at 300 K<br>55 mK > 330 K<br>200 mK > 480 K | 10 mK from 77 K to<br>305 K                                                      | ±10 mK/yr from<br>77 K to 273 K  | Yes                                       | Recommended<br>above 70 K;<br>error < 0.1 %<br>with standard<br>correction<br>factors given in<br>Appendix A5.5 | Measurements<br>above 77 K<br>Excellent<br>reproducibility<br>interchange-<br>ability, low mag.<br>field error<br>Many shapes &<br>sizes | Low without<br>calibration<br>High with<br>individual.<br>calibration |  |  |
| Rh–Fe                                                           | 0.5 K to 900 K                                                                       | With indiv.<br>calibration:<br>10 mK 4.2 K<br>25 mK 100 K<br>35 mK 300K                                                                                          | 10 mK from 1.4 K<br>to 325 K<br>High purity, strain-<br>free: 0.1 mK at<br>4.2 K | ±20 mK/yr from<br>1.4 K to 325 K | No                                        | Not<br>recommended<br>below ~77 K                                                                               | Secondary standard<br>thermometer<br>Measurements over<br>a wide temp.<br>range down to<br>0.5 K                                         | High with<br>indiv. calib.                                            |  |  |

Semiconductor-like Resistance Sensors (negative temperature coefficient):

| Germanium | 0.05 K to | Must be indiv.     | 0.5 mK at 4.2 K | ±1 mK/yr at 4.2 K | No | Not         | Secondary standard | High with     |
|-----------|-----------|--------------------|-----------------|-------------------|----|-------------|--------------------|---------------|
|           | 100 K     | calibrated.        |                 | ±10 mK/yr at 77 K |    | recommended | thermometer        | indiv. calib. |
|           |           | With indiv. calib: |                 |                   |    |             | Excellent          |               |
|           |           | 5 mK at < 10 K     |                 |                   |    |             | reproducibility    |               |
|           |           | 15 mK at < 20 K    |                 |                   |    |             |                    |               |
|           |           | 35 mK at < 50 K    |                 |                   |    |             |                    |               |

| Sensor Type             | Temp. Range    | np. Range Accuracy <sup>*</sup> Reproducibility <sup>†</sup> Long-term |                  | Inter-              | Magnetic | Best Use         | Cost                   |               |
|-------------------------|----------------|------------------------------------------------------------------------|------------------|---------------------|----------|------------------|------------------------|---------------|
|                         |                | $(\pm value)$                                                          | (± value)        | Calibration Drift   | change-  | Field Use        |                        |               |
|                         | •              |                                                                        |                  |                     | ability* |                  |                        |               |
| Zirconium               | 0.3 K to 420 K | Must be indiv.                                                         | 3 mK at 4.2 K    | ±25 mK/yr over the  | No       | Recommended      | One of the best        | High with     |
| oxynitride              |                | calibrated.                                                            |                  | range 1 K to 100 K  |          | Lowest error     | sensors for use in     | indiv. calib. |
| (Cernox <sup>TM</sup> ) |                | With indiv. calib:                                                     |                  | 0.05% of reading    |          | Correction       | mag. fields            |               |
|                         |                | 5 mK at 4.2 K                                                          |                  | 100 K to 300 K      |          | factors given in | Good sensitivity       |               |
|                         |                | 20 mK at 20 K                                                          |                  |                     |          | Appendix A5.6    | over wide temp.        |               |
|                         |                | 50 mK at 100 K                                                         |                  |                     |          |                  | range                  |               |
|                         |                | 140 mK at 300 K                                                        |                  |                     |          |                  | Fast response time     |               |
|                         |                | 230 mK at 400 K                                                        |                  |                     |          |                  | as chip                |               |
| Carbon glass            | 1 K to ~325 K  | Must be indiv.                                                         | 0.75 mK at 4.2 K | -5 mK/yr at 4.2 K   | No       | Recommended      | One of the best        | High with     |
|                         |                | calibrated.                                                            |                  | –30 mK/yr at 15 K   |          | Correction       | sensors for use in     | indiv. calib. |
|                         |                | With indiv. calib:                                                     |                  | –100 mK/yr at 77 K  |          | factors given    | mag. fields            |               |
|                         |                | 5 mK at < 10 K                                                         |                  | -600 mK/yr at 300 K |          | by Sample et     | High sensitivity at    |               |
|                         |                | 20 mK at 20 K                                                          |                  |                     |          | al. (1982)       | 4.2 K, low sens.       |               |
|                         |                | 55 mK at 50 K                                                          |                  |                     |          |                  | >100K                  |               |
|                         |                |                                                                        |                  |                     |          |                  | Fragile; calib. easily |               |
|                         |                |                                                                        |                  |                     |          |                  | invalidated            |               |
| Bi ruthenate/           | 0.05 K to      | With indiv. calib:                                                     | 10 mK at 4.2 K   | ±15 mK/yr at 4.2 K  | Yes, but | Recommended      | Most useful below      | High with     |
| ruthenium               | 40 K           | 5 mK at 0.05 K                                                         |                  |                     | only     |                  | 20 K                   | indiv. calib. |
| oxide                   |                | 7 mK at 1.4 K                                                          |                  |                     | within   |                  | Calibration            |               |
|                         |                | 11 mK at 4.2 K                                                         |                  |                     | each lot |                  | interchangeability     |               |
|                         |                | 77 mK at 20 K                                                          |                  |                     |          |                  | (20-40 mK) for         |               |
|                         |                | 470 mK at 77 K                                                         |                  |                     |          |                  | sensors of the         |               |
|                         |                | 1.7 K at 200 K                                                         |                  |                     |          |                  | same lot               |               |
|                         |                | 7 K at 300 K                                                           |                  |                     |          |                  |                        |               |

Diode Voltage Sensors:

| Silicon diode | 1.4 K to 475 K | Without calib:     | 5 mK at 4.2 K  | ±10 mK/yr at 4.2 K                      | Yes | Not                      | Relatively        | Medium         |
|---------------|----------------|--------------------|----------------|-----------------------------------------|-----|--------------------------|-------------------|----------------|
|               |                | 1 K < 100 K        | 20 mK at 77 K  | ±40 mK/yr at 77 K                       |     | recommended              | inexpensive,      | without calib. |
|               |                | 1% at 100 K–       | 15 mK at 300 K | ±25 mK/yr at 300 K                      |     | below ~60 K              | easily measured,  | High with      |
|               |                | 475 K              |                | , i i i i i i i i i i i i i i i i i i i |     |                          | interchangeable   | indiv. calib.  |
|               |                | With indiv. calib: |                |                                         |     |                          | thermometer       |                |
|               |                | 20 mK 1.4-10 K     |                |                                         |     |                          | Small size        |                |
|               |                | 55 mK 10-475 K     |                |                                         |     |                          |                   |                |
| GaAlAs diode  | 1.4 K to 325 K | Must be indiv.     | 5 mK at 4.2 K  | ±15 mK/yr at 4.2 K                      | No  | Acceptable error         | When diode sensor | High with      |
|               |                | calibrated.        |                | ±50 mK/yr over the                      |     | (~10 times less          | is required in    | indiv. calib.  |
|               |                | With indiv. calib: |                | range 77 K to                           |     | than Si diode,           | mag. field        |                |
|               |                | 15 mK < 20 K       |                | 330 K                                   |     | but >10 times            |                   |                |
|               |                | 50 mK at 50 K      |                |                                         |     | greater error            |                   |                |
|               |                | 110 mK at 300 K    |                |                                         |     | than Cernox <sup>™</sup> |                   |                |

Special Purpose Sensors:

| Thermocouples |                |                  | 20 mK at 77 K       |         | Yes |                     | Low mass sensor     | Requires low |
|---------------|----------------|------------------|---------------------|---------|-----|---------------------|---------------------|--------------|
| Chromel-      | 1.4 K to 325 K |                  |                     | —       |     |                     | - Chromel-AuFe      | dc voltage   |
| AuFe(0.07%)   |                |                  |                     |         |     | Not                 | for lower           | measurement  |
| Type E        | 3 K to 1274 K  | 1.7 K from 73 K  |                     |         |     | recommended         | temp. range         |              |
| (Chromel-     |                | to 273 K         |                     |         |     |                     | - Type E for        |              |
| CuNi)         |                |                  |                     |         |     | Difficult to use in | higher temp.        |              |
|               |                |                  |                     |         |     | magnetic field      | range               |              |
| Capacitance   | 1 K to 290 K   | Used as transfer | > 500 mK            | ±1 K/yr | No  | Recommended         | Excellent magnetic  | Sensor:      |
| Sensor        |                | control element  | 10 mK after cooling |         |     | for temperature     | field stability for | medium       |
|               |                | only, not        | and stabilizing     |         |     | control             | temp. control       | Requires     |
|               |                | absolute         |                     |         |     |                     |                     | capacitance  |
|               |                | measurement      |                     |         |     |                     |                     | measurement  |

Definitions:

\* Accuracy: The difference between the measured and true temperature value.

<sup>†</sup> Reproducibility: The change in apparent temperature when the sensor is subjected to repeated thermal cycling from room temperature.

<sup>‡</sup> Interchangeability: The ability to substitute one sensor for another with little change in calibration.

<sup>a</sup> Information compiled from Temperature Measurement and Control (2000, 2002), Lake Shore Cryotronics, Westerville, Ohio; L. M. Besley (1993), National

Measurements Laboratory, Sydney, Australia; and L. G. Rubin (2002), Francis Bitter National Magnet Laboratory, Cambridge, Massachusetts.

#### References:

Carbon resistors: H. H. Sample, L. J. Neuringer, and L. G. Rubin (1974), *Rev. Sci. Instrum.*, **45**, 64–73. Carbon-glass thermometers: H. H. Sample, B. L. Brandt, and L. G. Rubin (1982), *Rev. Sci. Instrum.* **53**, 1129–1136. Cernox<sup>™</sup>: B. L. Brandt, D. W. Liu, and L. G. Rubin (1999), *Rev. Sci. Instrum.* **70**, 104–110. Platinum thermometers: B. L. Brandt, L. G. Rubin, and H. H. Sample (1988), *Rev. Sci. Instrum.* **59**, 642–645. Thermocouples: H. H. Sample and L. G. Rubin (1977), *Cryogenics* **17**, 597–606. A5.3a Platinum-resistance-thermometer resistivity vs. temperature) above 70 K DIN EN 60751 (Sections 5.1.3, 5.1.6, and 5.5.1)

This table gives a standard calibration of the temperature dependence of platinum resistance thermometers (PRTs) for use above liquid-nitrogen temperature. This calibration is not recommended at lower temperatures, however, because the role of impurity resistivity increases in the low-temperature range. A standard calibration below 70 K that compensates for varying impurity resistivities is given in the next table, Appendix A5.3b.

For platinum thermometers having an ice-point resistance  $R_{273K}$  other than 100  $\Omega$ , multiply the resistance values in this table by the ratio of the ice-point resistance to 100  $\Omega$ . For example, for a 500  $\Omega$  *PRT*, multiply all the values in the table by 5 to obtain the calibration for such a thermometer.

*Calculation of temperature values* (ITS-90): Temperatures other than those listed in the table can be calculated according to DIN EN 60751 for Class A and Class B platinum resistance thermometers {alpha =  $[R_{100^{\circ}C} - R_{0^{\circ}C}]/[100 R_{0^{\circ}C}] = 0.00385$ }, where the temperature *T* is in kelvins:

For T < 273.15 K (0 °C):  $R(T) = R_0 [1 + A (T - 273.15) + B (T - 273.15)^2 + C (T - 373.15) (T - 273.15)^3]$ For  $T \ge 273.15$  K (0 °C):  $R(T) = R_0 [1 + A (T - 273.15) + B (T - 273.15)^2]$ where the constants in these two equations have the values  $A = 3.9083 \times 10^{-3} \text{ °C}^{-1}$   $B = -5.775 \times 10^{-7} \text{ °C}^{-2}$   $C = -4.183 \times 10^{-12} \text{ °C}^{-4}$   $R_0 = 100 \Omega$ Interchangeability tolerance:  $Class A: \Delta T (K) = \pm (0.15 + 0.002 | T - 273.15 |)$  $Class B: \Delta T (K) = \pm (0.3 + 0.005 | T - 273.15 |)$ 

| Т<br>[K] | <i>R</i><br>[Ω] | Interchange-<br>ability<br>Tolerance<br>[K] | Т<br>[K] | <i>R</i><br>[Ω] | Interchange-<br>ability<br>Tolerance<br>[K] | Т<br>[K] | <i>R</i><br>[Ω] | Interchange-<br>ability<br>Tolerance<br>[K] |
|----------|-----------------|---------------------------------------------|----------|-----------------|---------------------------------------------|----------|-----------------|---------------------------------------------|
|          |                 | Class A, B                                  |          |                 | Class A, B                                  |          |                 | Class A, B                                  |
| 60       | 12.80           |                                             | 140      | 46.71           |                                             | 225      | 81.04           |                                             |
| 65       | 14.98           |                                             | 145      | 48.77           |                                             | 230      | 83.02           |                                             |
| 70       | 17.16           | $\pm 0.6, \pm 1.3$                          | 150      | 50.82           | $\pm 0.4, \pm 0.9$                          | 235      | 85.00           |                                             |
| 75       | 19.32           |                                             | 155      | 52.87           |                                             | 240      | 86.98           |                                             |
| 80       | 21.47           |                                             | 160      | 54.91           |                                             | 245      | 88.95           |                                             |
| 85       | 23.62           |                                             | 165      | 56.95           |                                             | 250      | 90.92           | ±0.2, ±0.4                                  |
| 90       | 25.75           |                                             | 170      | 58.98           |                                             | 255      | 92.89           |                                             |
| 95       | 27.88           |                                             | 175      | 61.01           |                                             | 260      | 94.85           |                                             |
| 100      | 30.00           | $\pm 0.5, \pm 1.2$                          | 180      | 63.03           |                                             | 265      | 96.81           |                                             |
| 105      | 32.12           |                                             | 185      | 65.05           |                                             | 270      | 98.77           |                                             |
| 110      | 34.22           |                                             | 190      | 67.06           |                                             | 273.15   | 100.00          |                                             |
| 115      | 36.32           |                                             | 195      | 69.07           |                                             | 275      | 100.72          |                                             |
| 120      | 38.41           |                                             | 200      | 71.07           | ±0.3, ±0.7                                  | 280      | 102.67          |                                             |
| 125      | 40.49           |                                             | 205      | 73.07           |                                             | 285      | 104.62          |                                             |
| 130      | 42.57           |                                             | 210      | 75.07           |                                             | 290      | 106.57          |                                             |
| 135      | 44.64           |                                             | 215      | 77.06           |                                             | 295      | 108.51          |                                             |
|          |                 |                                             | 220      | 79.05           |                                             | 300      | 110.45          | $\pm 0.2, \pm 0.4$                          |
|          |                 |                                             |          |                 |                                             |          |                 |                                             |

DIN EN 60751 resistance vs. temperature (ITS-90) for platinum-resistance thermometers. (Thermometer resistance at 273.15 K is 100  $\Omega$ , alpha <sup>a</sup> = 0.00385.)

<sup>a</sup> Alpha =  $[R_{100^{\circ}C} - R_{0^{\circ}C}]/100 R_{0^{\circ}C}]$ 

A5.3b Platinum-resistance-thermometer resistivity vs. temperature below 70 K (Sections 5.1.3, 5.1.6, and 5.5.1)

This table provides a calibration for platinum resistance thermometers (PRTs) if they must be used for thermometry below  $\sim$ 70 K (such as a when a platinum film-type sensor is used for a rapid time response). In this low-temperature range, differences in impurity levels in the thermometers lead to significant errors in the standard calibration table (Appendix A5.3a). Consequently, the temperature should be determined by calculating the *Z* ratio (defined below).

With this scheme, the impurity resistivity of an individual PRT can be compensated. The PRT's resistance is first measured at or near liquid-helium temperature in order to determine its impurity resistivity  $R_{4.2K}$ . This is then used with the measured resistance of the sensor  $R_T$  to determine the ratio:

$$Z \equiv (R_T - R_{4.2\mathrm{K}})/(R_{273\mathrm{K}} - R_{4.2\mathrm{K}}),$$

where  $R_{273K}$  is the sensor's ice-point resistivity. The value of this Z-ratio can then be used to determine temperature from the following table.

Values of  $\Delta Z/\Delta T$  are also provided to facilitate interpolation between tabulated temperature values.

This Z-ratio procedure has a typical error of about  $\pm$  25 mK down to 30 K, below which temperature the error increases to about  $\pm$  120 mK at 14 K (Besley and Kemp 1978). Use below 14 K is not recommended.

| Т<br>[K] | 10 <sup>6</sup> Z | $\frac{10^6 \Delta Z / \Delta T}{[\text{K}^{-1}]}$ |
|----------|-------------------|----------------------------------------------------|
| 14.0     | 908.7             | 256                                                |
| 14.5     | 1043.5            | 284                                                |
| 15.0     | 1192.9            | 314                                                |
| 15.5     | 1358.2            | 347                                                |
| 16.0     | 1540.4            | 382                                                |
| 16.5     | 1740.3            | 418                                                |
| 17.0     | 1958.9            | 457                                                |
| 17.5     | 2197.2            | 497                                                |
| 18.0     | 2456.2            | 539                                                |
| 18.5     | 2736.7            | 583                                                |
| 19.0     | 3039.7            | 629                                                |
| 19.5     | 3366.1            | 677                                                |
| 20.0     | 3716.7            | 726                                                |
| 21.0     | 4493.6            | 829                                                |
| 22.0     | 5376.0            | 937                                                |
| 23.0     | 6368.3            | 1049                                               |
| 24.0     | 7474.2            | 1164                                               |
| 25.0     | 8696.8            | 1282                                               |
| 26.0     | 10038             | 1401                                               |
| 27.0     | 11500             | 1522                                               |
| 28.0     | 13083             | 1644                                               |
| 29.0     | 14788             | 1766                                               |
| 30.0     | 16615             | 1887                                               |
| 31.0     | 18562             | 2007                                               |
| 32.0     | 20628             | 2126                                               |
| 33.0     | 22812             | 2242                                               |
| 34.0     | 25111             | 2356                                               |
| 35.0     | 27523             | 2468                                               |
| 36.0     | 30045             | 2576                                               |
| 37       | 32674             | 2681                                               |
| 38       | 35406             | 2783                                               |
| 39       | 38238             | 2880                                               |

*Z*-ratio for platinum resistance thermometers <sup>*a*</sup>

| Т<br>[K] | 10 <sup>6</sup> Z | $\frac{10^6 \Delta Z / \Delta T}{[\mathrm{K}^{-1}]}$ |
|----------|-------------------|------------------------------------------------------|
| 40       | 41166             | 2974                                                 |
| 42       | 47293             | 3151                                                 |
| 44       | 53758             | 3311                                                 |
| 46       | 60528             | 3456                                                 |
| 48       | 67572             | 3586                                                 |
| 50       | 74862             | 3701                                                 |
| 52       | 82368             | 3803                                                 |
| 54       | 90065             | 3892                                                 |
| 56       | 97929             | 3970                                                 |
| 58       | 105937            | 4037                                                 |
| 60       | 114071            | 4095                                                 |
| 65       | 134839            | 4205                                                 |
| 70       | 156050            | 4274                                                 |
| 75       | 177535            | 4316                                                 |
| 80       | 199174            | 4337                                                 |
| 85       | 220881            | 4344                                                 |
| 90       | 242600            | 4342                                                 |
| 95       | 264293            | 4334                                                 |
| 100      | 285935            | 4322                                                 |

<sup>a</sup> Table values were calculated by L. M. Besley and R. C. Kemp (1978), *Cryogenics* 18, 497–500, from data on 50 high-quality platinum thermometers. Data were compiled by C. G. Kirby and R. E. Bedford, and J. Kathnelson (1975), *Metrologia* 11, 117–124, and J. P. Compton and S. D. Ward (1975), *Temperature Measurement*, p. 91, Institute of Physics London Conference Series No. 26. See also the discussion and summary given in G. K. White (1989), *Experimental Techniques in Low-Temperature Physics*, pp. 100–104, Oxford University Press.

| Silicon Diode <sup>b</sup><br>DT-470<br>Curve 10 |        | Thermocouple <sup>c</sup><br>Chromel vs.<br>Au–0.07at%Fe |        | Type E <sup>d</sup><br>Thermocouple<br>Chromel vs.<br>Constantan |         | Type K <sup>e</sup><br>Thermocouple<br>Chromel vs.<br>Alumel |         | Type T <sup>f</sup><br>Thermocouple<br>Copper vs.<br>Constantan |         |
|--------------------------------------------------|--------|----------------------------------------------------------|--------|------------------------------------------------------------------|---------|--------------------------------------------------------------|---------|-----------------------------------------------------------------|---------|
| [K]                                              | [V]    | [K] [mV]                                                 |        | [K]                                                              | [mV]    | [K] [mV]                                                     |         | [K]                                                             | [mV]    |
| 1.4                                              | 1.6981 | 1.4                                                      | -5.298 | 3.0                                                              | -9.836  | 3.0                                                          | -6.458  | 3.0                                                             | -6.258  |
| 2.0                                              | 1.6879 | 3.0                                                      | -5.281 | 5.6                                                              | -9.830  | 6.0                                                          | -6.455  | 6.5                                                             | -6.252  |
| 3.8                                              | 1.6390 | 4.8                                                      | -5.259 | 9.0                                                              | -9.818  | 10.0                                                         | -6.449  | 11.0                                                            | -6.240  |
| 9.0                                              | 1.4505 | 7.0                                                      | -5.223 | 13.5                                                             | -9.796  | 14.5                                                         | -6.438  | 16.5                                                            | -6.218  |
| 12.0                                             | 1.3681 | 10.5                                                     | -5.174 | 19.0                                                             | -9.757  | 19.5                                                         | -6.421  | 22.0                                                            | -6.189  |
| 15.5                                             | 1.2946 | 19.0                                                     | -5.032 | 25.0                                                             | -9.701  | 25.0                                                         | -6.395  | 29.0                                                            | -6.140  |
| 20.0                                             | 1.2144 | 26.0                                                     | -4.193 | 32.0                                                             | -9.620  | 32.0                                                         | -6.353  | 38.0                                                            | -6.062  |
| 24.0                                             | 1.1360 | 48.0                                                     | -4.549 | 40.0                                                             | -9.507  | 40.0                                                         | -6.291  | 48.0                                                            | -5.954  |
| 25.0                                             | 1.1246 | 58.0                                                     | -4.381 | 50.0                                                             | -9.337  | 48.0                                                         | -6.215  | 60.0                                                            | -5.800  |
| 26.0                                             | 1.1190 | 70.0                                                     | -4.173 | 60.0                                                             | -9.135  | 58.0                                                         | -6.102  | 75.0                                                            | -5.575  |
| 27.0                                             | 1.1152 | 80.0                                                     | -3.995 | 70.0                                                             | -8.903  | 65.0                                                         | -6.010  | 90.0                                                            | -5.320  |
| 28.0                                             | 1.1121 | 90.0                                                     | -3.813 | 80.0                                                             | -8.648  | 75.0                                                         | -5.863  | 105                                                             | -5.034  |
| 32.0                                             | 1.1026 | 100                                                      | -3.627 | 90.0                                                             | -9.367  | 85.0                                                         | -5.699  | 120                                                             | -4.719  |
| 36.0                                             | 1.0949 | 110                                                      | -3.437 | 105                                                              | -7.906  | 95.0                                                         | -5.516  | 135                                                             | -4.377  |
| 44.0                                             | 1.0809 | 120                                                      | -3.244 | 120                                                              | -7.394  | 105                                                          | -5.317  | 155                                                             | -3.878  |
| 60.0                                             | 1.0527 | 135                                                      | -2.948 | 135                                                              | -6.839  | 120                                                          | -4.988  | 175                                                             | -3.328  |
| 77.35                                            | 1.0203 | 150                                                      | -2.645 | 150                                                              | -6.240  | 135                                                          | -4.624  | 195                                                             | -2.734  |
| 100                                              | 0.9755 | 165                                                      | -2.337 | 170                                                              | -5.383  | 150                                                          | -4.227  | 220                                                             | -1.930  |
| 120                                              | 0.9338 | 180                                                      | -2.042 | 190                                                              | -4.456  | 165                                                          | -3.799  | 245                                                             | -1.059  |
| 140                                              | 0.8907 | 200                                                      | -1.600 | 210                                                              | -3.470  | 185                                                          | -3.187  | 270                                                             | -0.125  |
| 170                                              | 0.8240 | 220                                                      | -1.169 | 235                                                              | -2.161  | 205                                                          | -2.526  | 300                                                             | +1.062  |
| 200                                              | 0.7555 | 245                                                      | -0.623 | 260                                                              | -0.767  | 230                                                          | -1.646  | 330                                                             | +2.325  |
| 230                                              | 0.6856 | 270                                                      | -0.071 | 290                                                              | +0.995  | 260                                                          | -0.519  | 360                                                             | +3.664  |
| 273.15                                           | 0.5833 | 300                                                      | +0.599 | 320                                                              | +2.843  | 295                                                          | +0.869  | 395                                                             | +5.310  |
| 320                                              | 0.4707 | 305                                                      | +0.716 | 350                                                              | +4.770  | 350                                                          | +3.130  | 430                                                             | +7.042  |
| 360                                              | 0.3734 | 310                                                      | +0.843 | 385                                                              | +7.115  | 395                                                          | +5.000  | 470                                                             | +9.111  |
| 400                                              | 0.2746 | 315                                                      | +0.994 | 420                                                              | +9.557  | 460                                                          | +7.616  | 510                                                             | +11.276 |
| 440                                              | 0.1746 | 320                                                      | +1.194 | 460                                                              | +12.443 | 510                                                          | +9.613  | 555                                                             | +13.805 |
| 475                                              | 0.0906 | 325                                                      | +1.484 | 475                                                              | +13.557 | 575                                                          | +12.279 | 575                                                             | +14.968 |

*A5.4 Diode and thermocouple voltage-vs.-temperature tables*<sup>*a</sup></sup> (Sections 5.1.3, 5.1.6, 5.5.7, and 5.5.9)*</sup>
<sup>a</sup> Data from Lake Shore Cryotronics, Inc. (2002), Temperature Measurement and Control, Westerville, Ohio.

- <sup>b</sup> Accuracy: 1 K at < 100 K, 1% at 100 K–475 K. Reproducibility: ±5 mK at 4.2 K, ±20 mK at 77 K, ±15 mK at 300 K. See Appendix A5.2 for more information.
- <sup>c</sup> For accuracy information, refer to L. L. Sparks and R. L. Powell (1973), *J. Res. Nat. Bur. Std.* **76A**, 263–283. Thermocouple voltages are referenced to zero at 273 K.
- <sup>d</sup> Accuracy: 1.7 K from 73 K to 273 K. See Appendix A5.2 for more information. Thermocouple voltages are referenced to zero at 273 K.
- <sup>e</sup> Accuracy: 2.2 K from 73 K to 273 K. Thermocouple voltages are referenced to zero at 273 K.
- <sup>f</sup> Accuracy: 1.0 K from 73 K to 273 K. Thermocouple voltages are referenced to zero at 273 K.

A5.5 Magnetic-field correction factors for platinum resistance thermometers (Sections 5.1.6, 5.2 and 5.5.1)

These magnetic-field correction factors were calculated from magnetoresistance data obtained by Brandt et al. (1988) and are tabulated here as relative temperature errors  $(T_{\text{apparent}} - T_{\text{actual}})/T_{\text{actual}}$  [%]. The corrections were nearly the same for measurements on thirteen platinum resistance thermometers (PRTs) of varying purity (alpha = 3.85 to  $3.925 \times 10^{-3} \text{ °C}^{-1}$ ), as well as varying construction types (wire-wound and thick-film types), manufacturers, and icepoint resistances (100  $\Omega$  to 500  $\Omega$ ). For all the sensors, the *standard deviation* of the correction is simply about  $\pm 10$  % of the correction value itself, irrespective of temperature or magnetic field.

*Example*: Suppose we wish to correct the reading a platinum resistance thermometer that indicates an apparent temperature of 100 K in a magnetic field of 10 T.

From the table below we see that, at 100 K and 10 T, this temperature reading would actually be too high by 0.40 %. Thus, the actual temperature would be 100 K / (1 + 0.004) = 99.6 K. The standard deviation for this correction would be about 10 % of the correction (0.1 × 0.40 %), or only 0.04 % (i.e., 0.04 K).

The *orientation* of the magnetic field has a negligible effect on these correction factors for film-type PRTs, but the effect is significant for wire-wound PRTs. The data below correspond to wire-wound PRTs oriented with the applied magnetic field parallel to the long axis of their package (see Fig. 5.17). Thus, to use the table, it is recommended that wire-wound PRTs be installed with this orientation. Alternatively, when the sensor must be used in varying field orientations, a thin-film PRT is preferred.

#### Т B = 5 TB = 10 T*B* = 15 T *B* = 19 T [K] [%] [%] [%] [%] 40 1.5 8.9 4.1 6.7 50 1.05 2.9 5.0 6.7 60 0.59 3.2 1.8 4.5 70 0.27 0.97 1.9 2.8 80 0.18 0.67 1.4 2.1 90 0.50 1.0 0.13 1.6 0.11 0.40 0.85 100 1.4 120 0.068 0.26 0.57 0.91 150 0.038 0.16 0.35 0.56 200 0.019 0.085 0.19 0.31 220 0.017 0.074 0.17 0.28 250 0.015 0.058 0.14 0.22 300 0.010 0.030 0.080 0.13

Magnetic-Field Correction Factors for Platinum Resistance Thermometers <sup>a</sup>

Tabulated values are  $(T_{apparent} - T_{actual})/T_{actual}$  (in percent) at magnetic field B.

The standard deviation of these corrections is about  $\pm 10$  % of the tabulated values.

<sup>a</sup> Correction factors calculated from magnetoresistance data from B. L. Brandt, L. G. Rubin, and H. H. Sample (1988), *Rev. Sci. Instrum.* **59**, 642–645.

## A5.6 Magnetic-field correction factors for zirconium-oxynitride resistance thermometers (Sections 5.1.6, 5.2 and 5.5.4)

These magnetoresistance correction factors were interpolated to even temperature values by using a cubic-spline fit to magnetoresistance data measured by Brandt et al. (1999). The corrections are applicable to a wide range of zirconium-oxynitride (Cernox<sup>TM</sup>) resistance thermometers having 4.2 K resistances from about 300  $\Omega$  to 8000  $\Omega$ , and 4.2 K dimensionless sensitivities (dR/R)/(dT/T) in the range –0.74 to –1.9 (with –1.2 to –1.9 recommended).

The data are presented as the percentage change in *resistance* rather than *temperature* (unlike platinum in Appendix A5.5), because Brandt et al. found that, for zirconium-oxynitride sensors, the standard deviations in resistance were much smaller than the standard deviations in temperature. [This results from the wide range of dimensionless sensitivities  $S \equiv (dR/R)/(dT/T)$  of the individual sensors and the differing temperature dependences of *S*.] The standard deviation of the magnetoresistance correction is given as a ± quantity below each magnetoresistance correction. The standard deviations show that this correction procedure is most beneficial at temperatures below about 3 K and from about 6 K to 15 K.

*Example*: Let us assume that a particular zirconium-oxynitride thermometer indicates an apparent temperature of about 10 K in a magnetic field of 16 T. We wish to correct for the magnetoresistance error of this particular sensor.

From the table below, we see that, at 10 K and 16 T, the sensor's resistance would exceed its zero-field resistance by 1.40 %. We use the dimensionless sensitivity  $S \equiv (dR/R)/(dT/T)$  supplied with the calibration data for our particular sensor to calculate the equivalent shift in its apparent temperature. For our sensor, suppose that S = -1.16 at 10 K. Then, we would calculate  $(T_{apparent} - T_{actual})/T_{actual} = (1.40 \%)/(-1.16) = -1.21 \%$  and accordingly adjust the apparent temperature reading by this percentage to obtain the actual temperature. Since  $T_{apparent} - T_{actual}$  is negative at 10 K and 16 T, the apparent temperature is lower than the actual temperature, and it would need to be *increased* by 1.21 % to give the actual temperature. From the standard deviation of ±0.30 for the resistivity correction at 10 K and 16 T, we find the standard deviation of the temperature correction is ±0.26 %.

At liquid-nitrogen temperatures, the effect of magnetic-field *orientation* on these correction factors was observed to be insignificant. However, at 4.2 K the situation was more complex, giving rise to a positive orientation effect in some sensors, negative in others (for example, apparent temperature shifts of -0.2 % to +0.4 % were observed at 16 T; Brandt et al. 1999). Since the tabulated corrections were determined for field *perpendicular* to the film surface (canister aligned parallel to the field), it is best to orient these sensors accordingly so they can be used with the correction data.

| Т<br>[K] | <i>B</i> =2 T<br>[%] | <i>B</i> =4 T<br>[%]                            | <i>B</i> =6 T<br>[%] | <i>B</i> =8 T<br>[%] | <i>B</i> =10 T<br>[%]                           | <i>B</i> =12 T<br>[%] | <i>B</i> =14 T<br>[%] | <i>B</i> =16 T<br>[%] | <i>B</i> =18 T<br>[%]                            | <i>B</i> =20 T<br>[%]                           | <i>B</i> =23 T<br>[%] | <i>B</i> =26 T<br>[%]                       | <i>B</i> =29 T<br>[%] | <i>B</i> =32 T<br>[%] |
|----------|----------------------|-------------------------------------------------|----------------------|----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------|--------------------------------------------------|-------------------------------------------------|-----------------------|---------------------------------------------|-----------------------|-----------------------|
| 2        | -2.20<br>±0.39       | -4.47<br>±1.08                                  | -5.52<br>±1.58       | -6.10<br>±1.83       | -6.61<br>±1.90                                  | -7.19<br>±1.79        | -7.85<br>±1.59        | -8.59<br>±1.35        | $-10.12 \pm 1.09$                                | $-10.39 \pm 0.85$                               | $-10.96 \pm 1.00$     | -12.87<br>±1.28                             | $-14.87 \pm 1.80$     | -16.92<br>±2.35       |
| 2.5      | -1.21<br>±0.25       | -2.55<br>±0.77                                  | $-3.09 \pm 1.20$     | -3.25<br>±1.46       | -3.35<br>±1.55                                  | -3.55<br>±1.51        | -3.88<br>±1.35        | -4.14<br>±1.13        | $\begin{array}{c} -5.07 \\ \pm 0.86 \end{array}$ | $-5.65 \pm 0.59$                                | -6.31<br>±1.40        | $\begin{array}{c}-8.06\\\pm1.80\end{array}$ | $-9.87 \pm 2.25$      | -11.74<br>±2.76       |
| 3        | -0.65<br>±0.16       | -1.42<br>±0.52                                  | -1.65<br>±0.88       | -1.57<br>±1.12       | -1.43<br>±1.24                                  | -1.37<br>±1.24        | -1.47<br>±1.15        | -1.69<br>±0.98        | -2.17<br>±0.76                                   | $-2.73 \pm 0.57$                                | -3.42<br>±1.73        | -5.00<br>±2.16                              | 6.73<br>±2.62         | -8.55<br>±3.12        |
| 3.5      | -0.38<br>±0.11       | -0.76<br>±0.35                                  | -0.80<br>±0.64       | $-0.57 \pm 0.87$     | -0.28<br>±1.00                                  | $-0.06 \pm 1.04$      | 0.02<br>±1.00         | -0.11<br>±0.92        | -0.34<br>±0.79                                   | 0.75<br>±0.71                                   | -1.57<br>±1.92        | $-3.02 \pm 2.37$                            | -4.63<br>±2.84        | -6.34<br>±3.30        |
| 4.2      | -0.17<br>±0.03       | -0.30<br>±0.20                                  | -0.20<br>±0.42       | 0.11<br>±0.61        | 0.50<br>±0.73                                   | 0.82<br>±0.81         | 1.07<br>±0.81         | 1.06<br>±0.85         | 1.02<br>±0.74                                    | 0.79<br>±0.72                                   | 0.03<br>±2.03         | -1.20<br>±2.50                              | -2.63<br>±2.97        | -4.22<br>±3.43        |
| 5        | -0.09<br>±0.02       | -0.07<br>±0.15                                  | 0.10<br>±0.31        | 0.42<br>±0.44        | 0.82<br>±0.55                                   | 1.20<br>±0.59         | 1.47<br>±0.64         | 1.62<br>±0.67         | 1.22<br>±0.65                                    | 1.55<br>±0.68                                   | 1.00<br>±1.89         | 0.06<br>±2.37                               | -1.23<br>±2.84        | -2.65<br>±3.30        |
| 6        | $-0.08 \pm 0.02$     | $\begin{array}{c} 0.02 \\ \pm 0.07 \end{array}$ | 0.21<br>±0.19        | 0.51<br>±0.31        | $\begin{array}{c} 0.90 \\ \pm 0.40 \end{array}$ | 1.29<br>±0.45         | 1.61<br>±0.51         | 1.85<br>±0.55         | 2.01<br>±0.58                                    | 1.96<br>±0.68                                   | 1.69<br>±1.87         | 0.91<br>±2.31                               | -0.12<br>±2.78        | -1.26<br>±3.25        |
| 7        | -0.06<br>±0.01       | 0.03<br>±0.03                                   | 0.23<br>±0.11        | 0.52<br>±0.21        | 0.89<br>±0.27                                   | 1.26<br>±0.34         | 1.60<br>±0.39         | 1.88<br>±0.45         | 2.26<br>±0.53                                    | $\begin{array}{c} 2.08 \\ \pm 0.66 \end{array}$ | 1.88<br>±1.75         | 1.29<br>±2.17                               | 0.48<br>±2.62         | $-0.48 \pm 3.08$      |
| 8        | $-0.05 \pm 0.02$     | 0.03<br>±0.03                                   | 0.24<br>±0.07        | 0.52<br>±0.13        | 0.85<br>±0.18                                   | 1.19<br>±0.24         | 1.52<br>±0.30         | 1.80<br>±0.37         | 1.97<br>±0.48                                    | 2.03<br>±0.62                                   | 1.78<br>±1.53         | 1.38<br>±1.95                               | 0.73<br>±2.38         | -0.11<br>±2.81        |
| 9        | $-0.04 \pm 0.03$     | $\begin{array}{c} 0.02 \\ \pm 0.03 \end{array}$ | 0.21<br>±0.06        | 0.46<br>±0.10        | 0.76<br>±0.14                                   | 1.07<br>±0.18         | 1.37<br>±0.24         | 1.63<br>±0.32         | 1.71<br>±0.44                                    | 1.86<br>±0.57                                   | 1.62<br>±1.36         | 1.32<br>±1.76                               | 0.78<br>±2.16         | 0.08<br>±2.56         |
| 10       | $-0.05 \pm 0.03$     | 0.01<br>±0.04                                   | 0.16<br>±0.06        | 0.38<br>±0.09        | 0.64<br>±0.12                                   | 0.92<br>±0.15         | 1.18<br>±0.21         | 1.40<br>±0.30         | 1.54<br>±0.40                                    | 1.65<br>±0.52                                   | 1.43<br>±1.23         | 1.17<br>±1.59                               | 0.72<br>±1.96         | 0.16<br>±2.34         |
| 12       | -0.05                | -0.01                                           | 0.08                 | 0.23                 | 0.43                                            | 0.66                  | 0.85                  | 1.01                  | 1.21                                             | 1.24                                            | 1.04                  | 0.81                                        | 0.48                  | 0.09                  |

Tabulated values are [R(B) - R(0)]/R(0) (in *percent*) at magnetic field *B*.

The standard deviation of the correction is shown as a  $\pm$  factor (also in percent) below each correction.

### Magnetic Field Correction for Zirconium-Oxynitride (Cernox $^{\text{TM}}$ ) Resistance Thermometers $^{a}$

| <i>T</i><br>[K] | <i>B</i> =2 T [%]                               | <i>B</i> =4 T<br>[%]                            | <i>B</i> =6 T<br>[%] | <i>B</i> =8 T<br>[%]                            | <i>B</i> =10 T<br>[%]                            | <i>B</i> =12 T<br>[%] | <i>B</i> =14 T<br>[%] | <i>B</i> =16 T<br>[%]                            | <i>B</i> =18 T<br>[%]                            | <i>B</i> =20 T<br>[%] | <i>B</i> =23 T<br>[%]                           | <i>B</i> =26 T<br>[%] | <i>B</i> =29 T<br>[%] | <i>B</i> =32 T<br>[%] |
|-----------------|-------------------------------------------------|-------------------------------------------------|----------------------|-------------------------------------------------|--------------------------------------------------|-----------------------|-----------------------|--------------------------------------------------|--------------------------------------------------|-----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------|
|                 | ±0.02                                           | ±0.04                                           | ±0.05                | $\pm 0.08$                                      | ±0.11                                            | ±0.13                 | ±0.18                 | ±0.26                                            | ±0.34                                            | ±0.43                 | ±1.02                                           | ±1.31                 | ±1.62                 | ±1.95                 |
| 15              | -0.03<br>±0.02                                  | $-0.03 \pm 0.03$                                | 0.02<br>±0.05        | 0.12<br>±0.06                                   | 0.24<br>±0.08                                    | 0.37<br>±0.11         | 0.50<br>±0.15         | 0.61<br>±0.20                                    | 0.70<br>±0.26                                    | 0.76<br>±0.33         | 0.48<br>±0.77                                   | 0.32<br>±0.99         | 0.07<br>±1.23         | -0.27<br>±1.48        |
| 20              | $-0.03 \pm 0.01$                                | $-0.04 \pm 0.02$                                | -0.04<br>±0.03       | $-0.01 \pm 0.05$                                | 0.03<br>±0.06                                    | 0.09<br>±0.08         | 0.13<br>±0.11         | 0.17<br>±0.14                                    | 0.20<br>±0.18                                    | 0.22<br>±0.23         | -0.03<br>±0.51                                  | -0.17<br>±0.67        | $-0.37 \pm 0.83$      | $-0.65 \pm 1.00$      |
| 30              | $-0.01 \pm 0.00$                                | $-0.02 \pm 0.01$                                | -0.03<br>±0.01       | $-0.04 \pm 0.02$                                | $-0.04 \pm 0.03$                                 | $-0.05 \pm 0.05$      | $-0.05 \pm 0.07$      | $-0.07 \pm 0.09$                                 | $-0.09 \pm 0.11$                                 | -0.12<br>±0.13        | -0.35<br>±0.27                                  | -0.49<br>±0.34        | $-0.64 \pm 0.42$      | -0.83<br>±0.51        |
| 40              | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | $-0.01 \pm 0.00$                                | -0.01<br>±0.01       | $-0.02 \pm 0.01$                                | $-0.04 \pm 0.02$                                 | $-0.06 \pm 0.03$      | $-0.08 \pm 0.04$      | -0.10<br>±0.05                                   | $-0.14 \pm 0.07$                                 | -0.17<br>±0.08        | -0.38<br>±0.16                                  | -0.50<br>±0.19        | -0.61<br>±0.24        | -0.76<br>±0.29        |
| 50              | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | $-0.01 \pm 0.00$                                | -0.02<br>±0.01       | $\begin{array}{c}-0.03\\\pm0.01\end{array}$     | $-0.05 \pm 0.02$                                 | $-0.06 \pm 0.02$      | $-0.08 \pm 0.03$      | -0.11<br>±0.04                                   | $-0.14 \pm 0.05$                                 | -0.17<br>±0.06        | -0.32<br>±0.10                                  | -0.41<br>±0.13        | -0.51<br>±0.16        | -0.63<br>±0.19        |
| 60              | $-0.01 \pm 0.00$                                | $-0.02 \pm 0.01$                                | -0.03<br>±0.01       | $-0.04 \pm 0.02$                                | $-0.05 \pm 0.02$                                 | $-0.07 \pm 0.03$      | -0.09<br>±0.04        | -0.11<br>±0.05                                   | $-0.13 \pm 0.07$                                 | -0.16<br>±0.08        | -0.27<br>±0.07                                  | -0.34<br>±0.10        | -0.43<br>±0.12        | -0.53<br>±0.14        |
| 70              | $-0.01 \pm 0.01$                                | $-0.01 \pm 0.01$                                | -0.02<br>±0.01       | $-0.03 \pm 0.02$                                | $-0.04 \pm 0.02$                                 | $-0.06 \pm 0.03$      | $-0.08 \pm 0.05$      | -0.10<br>±0.06                                   | $-0.12 \pm 0.08$                                 | -0.15<br>±0.09        | -0.23<br>±0.06                                  | -0.30<br>±0.07        | $-0.37 \pm 0.09$      | -0.45<br>±0.11        |
| 77              | $\begin{array}{c} 0.00 \\ \pm 0.01 \end{array}$ | $-0.01 \pm 0.01$                                | -0.02<br>±0.01       | $\begin{array}{c}-0.02\\\pm0.01\end{array}$     | $-0.04 \pm 0.02$                                 | $-0.05 \pm 0.03$      | -0.07<br>±0.04        | $-0.09 \pm 0.06$                                 | $-0.11 \pm 0.07$                                 | -0.13<br>±0.08        | -0.21<br>±0.05                                  | -0.27<br>±0.06        | $-0.34 \pm 0.07$      | $-0.41 \pm 0.09$      |
| 80              | 0.00<br>±0.01                                   | $-0.01 \pm 0.01$                                | -0.01<br>±0.01       | $-0.02 \pm 0.01$                                | $-0.03 \pm 0.02$                                 | -0.04<br>±0.02        | -0.06<br>±0.03        | $\begin{array}{c}-0.08\\\pm0.04\end{array}$      | -0.10<br>±0.06                                   | -0.12<br>±0.07        | -0.20<br>±0.05                                  | -0.26<br>±0.06        | $-0.33 \pm 0.07$      | $-0.40 \pm 0.09$      |
| 90              | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | -0.01<br>±0.01       | $-0.02 \pm 0.01$                                | $\begin{array}{c} -0.02 \\ \pm 0.01 \end{array}$ | $-0.03 \pm 0.01$      | $-0.04 \pm 0.00$      | $-0.05 \pm 0.00$                                 | $-0.06 \pm 0.00$                                 | $-0.07 \pm 0.00$      | -0.18<br>±0.04                                  | -0.23<br>±0.04        | $-0.29 \pm 0.04$      | -0.34<br>±0.06        |
| 100             | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | -0.01<br>±0.01       | $\begin{array}{c}-0.01\\\pm0.01\end{array}$     | $-0.02 \pm 0.01$                                 | $-0.03 \pm 0.01$      | -0.02<br>±0.02        | $-0.03 \pm 0.03$                                 | $\begin{array}{c}-0.03\\\pm0.04\end{array}$      | $-0.04 \pm 0.04$      | -0.15<br>±0.04                                  | -0.20<br>±0.02        | -0.25<br>±0.02        | $-0.29 \pm 0.04$      |
| 120             | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | -0.01<br>±0.01       | $-0.01 \pm 0.01$                                | $\begin{array}{c} -0.02 \\ \pm 0.01 \end{array}$ | $-0.02 \pm 0.01$      | -0.01<br>±0.03        | $-0.01 \pm 0.04$                                 | $-0.01 \pm 0.06$                                 | $-0.02 \pm 0.06$      | -0.09<br>±0.02                                  | -0.13<br>±0.02        | $-0.17 \pm 0.02$      | $-0.18 \pm 0.00$      |
| 150             | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | $\begin{array}{c} 0.00 \\ \pm 0.00 \end{array}$ | 0.00<br>±0.01        | $\begin{array}{c} 0.00 \\ \pm 0.01 \end{array}$ | $-0.01 \pm 0.01$                                 | -0.01<br>±0.01        | -0.02<br>±0.01        | $\begin{array}{c} -0.02 \\ \pm 0.01 \end{array}$ | $\begin{array}{c} -0.03 \\ \pm 0.01 \end{array}$ | $-0.03 \pm 0.01$      | $\begin{array}{c} 0.08 \\ \pm 0.08 \end{array}$ | 0.09<br>±0.12         | 0.10<br>±0.16         | 0.16<br>±0.17         |
| 200             | 0.00<br>±0.01                                   | $\begin{array}{c} 0.00 \\ \pm 0.01 \end{array}$ | 0.00<br>±0.01        | $\begin{array}{c} 0.00 \\ \pm 0.01 \end{array}$ | $-0.01 \pm 0.01$                                 | -0.01<br>±0.01        | -0.01<br>±0.01        | $-0.01 \pm 0.01$                                 | $-0.02 \pm 0.01$                                 | $-0.02 \pm 0.02$      | 0.27<br>±0.17                                   | 0.35<br>±0.25         | 0.41<br>±0.33         | 0.56<br>±0.35         |
| 250             | 0.00                                            | 0.00                                            | 0.00                 | 0.00                                            | 0.00                                             | -0.01                 | -0.01                 | -0.01                                            | -0.01                                            | -0.01                 | 0.47                                            | 0.60                  | 0.72                  | 0.96                  |

From Experimental Techniques for Low Temperature Measurements by Jack W. Ekin, Oxford Univ. Press 2006, 2007, 2011

| Т<br>[K] | <i>B</i> =2 T [%] | <i>B</i> =4 T<br>[%] | <i>B</i> =6 T<br>[%] | <i>B</i> =8 T<br>[%] | <i>B</i> =10 T<br>[%] | <i>B</i> =12 T<br>[%] | <i>B</i> =14 T<br>[%] | <i>B</i> =16 T<br>[%] | <i>B</i> =18 T<br>[%] | <i>B</i> =20 T [%] | <i>B</i> =23 T [%] | <i>B</i> =26 T<br>[%] | <i>B</i> =29 T<br>[%] | <i>B</i> =32 T<br>[%] |
|----------|-------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|--------------------|-----------------------|-----------------------|-----------------------|
| 300      | $\pm 0.01$        | $\pm 0.01$           | $\pm 0.01$           | $\pm 0.01$           | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.02$         | $\pm 0.26$         | ±0.37                 | $\pm 0.49$            | $\pm 0.53$            |
|          | 0.00              | 0.00                 | 0.00                 | 0.00                 | 0.00                  | 0.00                  | 0.00                  | 0.00                  | 0.00                  | 0.00               | 0.67               | 0.85                  | 1.02                  | 1.35                  |
|          | $\pm 0.01$        | $\pm 0.01$           | $\pm 0.01$           | $\pm 0.01$           | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.01$            | $\pm 0.02$         | $\pm 0.35$         | ±0.50                 | $\pm 0.65$            | $\pm 0.71$            |

<sup>a</sup> These temperature corrections were interpolated to even temperature values by using a cubic-spline fit to magnetoresistance data measured by B. L. Brandt, D. W. Liu, and L. G. Rubin (1999), *Rev. Sci. Instrum.* **70**, 104–110.

Temperature controllers do not always have an auto-tuning feature, and, even if they do, it does not work well for some applications. Here we describe a time-proven, relatively simple, step-by-step procedure for manually optimizing a proportional-integral-differential (PID) controller's settings of gain G, integral time  $t_i$ , and the derivative time  $t_d$  for a specific system. The settings for a proportional-integral (PI) controller and a simple proportional (P) controller are also given. The optimum settings enable a controller to react quickly to a change in heat demand without much overshoot, oscillation, or droop below the set point (Sec. 5.4.3).

Before describing the tuning procedure, we first define a few terms.

#### Definitions

- *Cycle time* (sometimes referred to as *duty cycle*): This denotes the time it takes an on–off or time-proportional controller to complete an on–off cycle, illustrated in Fig. 5.15. This applies only to time-proportional controllers and not to analog voltage or current controllers.
- Proportional band, and gain: Let  $P_b$  be the proportional band around the set point (see Fig. 5.16), usually expressed as a percent of full scale. This is also be referred to as the gain, G, which is the reciprocal of the proportional band; that is,  $G \equiv 1/P_b$
- *Integration-time constant* (sometimes called *reset*): Let  $t_i$  be the characteristic time constant for integration to eliminate the offset error. (The offset error is the steady-state difference between the system temperature and the set point, illustrated in Fig. 5.16).
- *Derivative-time constant* (sometimes called *rate*): Let  $t_d$  be the characteristic time constant to correct transient disturbances in the system with a minimum of overshoot or undershoot.
- (The terms *proportional band, reset,* and *rate* are those generally used in the field of industrial controls, whereas *gain, integration-time constant*, and *derivative-time constant* are the terms employed by physicists and the companies that sell controllers to them.

#### Procedure

- The tuning procedure is easier to observe with a recorder or scrolling data-acquisition display to monitor the process temperature, since the time constants for cycling may be as long as 30 min or more.
- 2. For time-proportional controllers only, adjust the cycle time to a short time so that the system will not be limited in its time response because of the duty cycle of the heater power.
- 3. Set the gain to a small value (proportional band to a large value) so the system is overdamped to start with.
- 4. Turn the integral (reset) and derivative (rate) controls off.

- 5. Enter the set point where control is desired and wait until the temperature is close to that point, or use the manual heater control (manual reset) to reach a temperature near the set point. When the sample temperature is close to the desired temperature, increase the gain (decrease the proportional band) until the system just becomes unstable and starts to oscillate. This is easiest to observe by looking directly at the output power to the heater. Let us denote this critical value of the gain as G'.
- 6. Measure the time period of the oscillations and let us denote this as t'.
- Initial optimum values, G and t<sub>i</sub>, for optimum stable control are calculated from the following table by using the measured values of G' and t'. These values are given for three types of controllers: proportional control (P), proportional-integral control (PI), and for proportional-integral-differential control (PID).
- 8. After entering these initial values into the controller and turning on the integral and derivative control, the parameters can be fine tuning. If overshoot occurs in response to step changes in the set-point temperature, it can be eliminated by decreasing the derivative (rate) time constant  $t_d$ . When changes are made in the derivative time constant, a corresponding change should also be made in the integral time constant to keep their *ratio* about the same as that given in the table.
- 9. For time proportional controllers only, increase the cycle time after satisfactory tuning has been achieved to extend the contactor life of the power-supply. Increase the cycle time as much as possible without causing the system to breaking into oscillation when the heater power cycles on and off.

| Control Type <sup>c</sup>            | PID                    | PI                   | Р                         |
|--------------------------------------|------------------------|----------------------|---------------------------|
| Proportional gain                    | G = 0.6 G'             | G = 0.45 G'          | <i>G</i> = 0.5 <i>G</i> ′ |
| Integral time (reset time constant)  | $t_{\rm i} = 0.5 t'$   | $t_{\rm i} = 0.85t'$ |                           |
| Derivative time (rate time constant) | $t_{\rm d} = 0.125 t'$ |                      |                           |

*Calculation of control parameters for critical damping with the Ziegler–Nichols tuning formula.*<sup>*a,b*</sup>

<sup>a</sup> J. G. Ziegler and N. B. Nichols (1942), Trans. ASME 64, 759-768.

<sup>b</sup> P. B. Deshpande and R. H. Ash (1981), "Computer process control," ISA pub., USA.

<sup>c</sup>  $P \equiv$  proportional control,  $PI \equiv$  proportional-integral control, and  $PID \equiv$  proportional-integral-differential control.

For large time constants, where the Ziegler–Nichols method becomes time-consuming, a refinement that improves performance based on set-point weighting has been suggested by C. C. Hang, K. J. Astrom, and W. K. Ho (1991), *IEEE Proc.-D* **138**, 111–118.

If a computer is available to monitor the temperature, it is easy to implement an improved form of PID control with software described by C. K. Chan (1988), *Rev. Sci. Instr.* **59**, 1001–1003.

A good reference for understanding PID control at cryogenic temperatures is E. M. Forgan (1974), *Cryogenics* **14**, 207–214.

#### A6. Properties of solids at low temperature (ref. Chapter 6)

Additional sources of materials data in the literature and on the Internet are given in the suggested reading and web sites listed in Secs. 6.7.1 and 6.7.2, respectively.

### A6.1 Elements: Physical properties at room temperature <sup>a</sup>

For anisotropic elements, polycrystalline values are listed unless otherwise noted.

| Element   | Atomic<br>Weight   | Crystal<br>Structure | Density<br>(298 K)<br>[g/cm <sup>3</sup> ] | Debye<br>Temp.<br>$\theta_D^b$<br>(295K)<br>[K] | Specific<br>Heat<br>(at const.<br>press.)<br>(298 K)<br>[J/(g·K)] | Coef. of<br>Thermal<br>Linear<br>Expansion<br>(298 K)<br>[10 <sup>-6</sup> K <sup>-1</sup> ] | Electrical<br>Resistivity<br>(295 K)<br>[μΩ·cm] | Thermal<br>Cond-<br>uctivity<br>(300 K)<br>[W/(m·K)] | Magnetic<br>Susceptibility <sup>e</sup><br>[10 <sup>-6</sup> SI] | Supercon-<br>ducting<br>Transition<br>Temperature <sup>f</sup><br>[K] |
|-----------|--------------------|----------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
|           |                    |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      |                                                                  |                                                                       |
| Aluminum  | 26.98              | f.c.c.               | 2.70                                       | 380                                             | 0.904                                                             | 23.1                                                                                         | 2.67                                            | 237                                                  | 20.8                                                             | 1.175                                                                 |
| Antimony  | 121.76             | rhombohedral         | 6.68                                       | 210                                             | 0.207                                                             | 11.0                                                                                         | 41.3 °                                          | 24.3                                                 |                                                                  |                                                                       |
|           |                    |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | -68.3                                                            |                                                                       |
| Arsenic   | 74.91 <sup>d</sup> | rhombohedral         | 5.73 °                                     | 290                                             | 0.329                                                             | 5.6 °<br>(293 K)                                                                             | 29 °                                            | 37 <sup>d</sup>                                      | -5.4                                                             |                                                                       |
| Barium    | 137.33             | b.c.c.               | 3.62                                       | 110                                             | 0.205                                                             | 20.6                                                                                         | 33.5                                            | 18.4                                                 | 0.1                                                              |                                                                       |
| Beryllium | 9.013              | h.c.p.               | 1.85                                       | 920                                             | 1.82                                                              | 11.3                                                                                         | 3.62                                            | 200                                                  | -23.1                                                            | 0.026                                                                 |

| Element  | Atomic<br>Weight | Crystal<br>Structure | Density<br>(298 K)<br>[g/cm <sup>3</sup> ] | Debye<br>Temp.<br>θ <sub>D</sub> <sup>b</sup><br>(295K)<br>[K] | Specific<br>Heat<br>(at const.<br>press.)<br>(298 K)<br>[J/(g·K)] | Coef. of<br>Thermal<br>Linear<br>Expansion<br>(298 K)<br>[10 <sup>-6</sup> K <sup>-1</sup> ] | Electrical<br>Resistivity<br>(295 K)<br>[μΩ·cm] | Thermal<br>Cond-<br>uctivity<br>(300 K)<br>[W/(m·K)] | Magnetic<br>Susceptibility <sup>e</sup><br>[10 <sup>-6</sup> SI] | Supercon-<br>ducting<br>Transition<br>Temperature <sup>f</sup><br>[K] |
|----------|------------------|----------------------|--------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Bismuth  | 208.98           | rhombohedral         | 9.79                                       | 120                                                            | 0.122                                                             | 13.4                                                                                         | 116 °                                           | 7.87                                                 | -165.0                                                           |                                                                       |
| Boron    | 10.81            | hexagonal            | 2.535                                      | 1300                                                           | 1.277                                                             | 8.3                                                                                          | 1012 <sup>d</sup>                               | 30 <sup>d</sup>                                      | -19 7                                                            |                                                                       |
|          |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | 19.7                                                             |                                                                       |
| Cadmium  | 112.41           | h.c.p.               | 8.69                                       | 175                                                            | 0.231                                                             | 30.8                                                                                         | 7.27 °                                          | 96.8                                                 | -19.0                                                            | 0.517                                                                 |
| Calcium  | 40.08            | f.c.c.               | 1.54                                       | 210                                                            | 0.646                                                             | 22.3                                                                                         | 3.38                                            | 98 <sup>d</sup>                                      |                                                                  |                                                                       |
|          |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | 19.4                                                             |                                                                       |
| Carbon:  |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      |                                                                  |                                                                       |
| graphite | 12.01            | hexagonal            | 2.22                                       | 400                                                            | 0.709                                                             | 3                                                                                            | $10^2 - 10^{6}$ d                               | 200                                                  | -13.9                                                            |                                                                       |
| diamond  | 12.01            | diamond              | 3.51                                       | 2000                                                           | 0.4715                                                            | 1.18                                                                                         | $10^{12}$ d                                     | 990                                                  |                                                                  |                                                                       |
| Cesium   | 132.91           | b.c.c.               | 1.93                                       | 45                                                             | 0.242                                                             | 97                                                                                           | 20.6                                            | 35.9                                                 |                                                                  |                                                                       |
|          |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | 5.1                                                              |                                                                       |
| Chromium | 52.00            | b.c.c.               | 7.15                                       | 480                                                            | 0.450                                                             | 4.9                                                                                          | 12.5                                            | 93.7                                                 |                                                                  |                                                                       |
|          |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | 290.5                                                            |                                                                       |
| Cobalt   | 58.93            | h.c.p.               | 8.86                                       | 380                                                            | 0.421                                                             | 13.0                                                                                         | 5.80 °                                          | 100                                                  | ferro                                                            |                                                                       |

| Element   | Atomic<br>Weight | Crystal<br>Structure | Density<br>(298 K)<br>[g/cm <sup>3</sup> ] | Debye<br>Temp.<br>θ <sub>D</sub> <sup>b</sup><br>(295K)<br>[K] | Specific<br>Heat<br>(at const.<br>press.)<br>(298 K)<br>[J/(g·K)] | Coef. of<br>Thermal<br>Linear<br>Expansion<br>(298 K)<br>[10 <sup>-6</sup> K <sup>-1</sup> ] | Electrical<br>Resistivity<br>(295 K)<br>[μΩ·cm] | Thermal<br>Cond-<br>uctivity<br>(300 K)<br>[W/(m·K)] | Magnetic<br>Susceptibility <sup>e</sup><br>[10 <sup>-6</sup> SI] | Supercon-<br>ducting<br>Transition<br>Temperature <sup>f</sup><br>[K] |
|-----------|------------------|----------------------|--------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Copper    | 63.55            | f.c.c.               | 8.96                                       | 310                                                            | 0.385                                                             | 16.5                                                                                         | 1.69                                            | 401                                                  |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | -9.7                                                             |                                                                       |
| Gallium   | 69.72            | orthorhombic         | 5.91                                       | 240                                                            | 0.374                                                             | 18                                                                                           | 14.85 °                                         | 40.6                                                 | -23.2                                                            | 1.083                                                                 |
| Germanium | 72.59            | diamond              | 5.32                                       | 400                                                            | 0.3219                                                            | 6.1                                                                                          | $5 \times 10^{7}$ d                             | 64                                                   |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | -10.7                                                            |                                                                       |
| Gold      | 196.97           | f.c.c.               | 19.3                                       | 185                                                            | 0.129                                                             | 14.2                                                                                         | 2.23                                            | 317                                                  |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | -34.5                                                            |                                                                       |
| Hafnium   | 178.49           | h.c.p.               | 13.3                                       | 210                                                            | 0.144                                                             | 65.9                                                                                         | 33.3                                            | 23                                                   | 66.4                                                             | 0.128                                                                 |
| Indium    | 114.82           | tetragonal           | 7.31                                       | 110                                                            | 0.233                                                             | 32.1                                                                                         | 8.75 °                                          | 81.6                                                 | -8.2                                                             | 3.408                                                                 |
| Iridium   | 192.22           | f.c.c.               | 22.5                                       | 290                                                            | 0.131                                                             | 6.4                                                                                          | 5.07 °                                          | 147                                                  | 36.8                                                             | 0.112                                                                 |
| Iron      | 55.85            | b.c.c.               | 7.87                                       | 400                                                            | 0.449                                                             | 11.8                                                                                         | 9.71                                            | 80.2                                                 | ferro                                                            |                                                                       |
| Lead      | 207.20           | f.c.c.               | 11.3                                       | 88                                                             | 0.127                                                             | 28.9                                                                                         | 20.9                                            | 35.3                                                 | -15.8                                                            | 7.196                                                                 |
| Lithium   | 6.94             | b.c.c.               | 0.534                                      | 360                                                            | 3.57                                                              | 46                                                                                           | 9.36                                            | 84.7                                                 |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | 13.6                                                             |                                                                       |
| Magnesium | 24.30            | h.c.p.               | 1.74                                       | 330                                                            | 1.024                                                             | 24.8                                                                                         | 4.43                                            | 156                                                  |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                                |                                                                   |                                                                                              |                                                 |                                                      | 11.8                                                             |                                                                       |

| Element    | Atomic<br>Weight | Crystal<br>Structure | Density<br>(298 K)<br>[g/cm <sup>3</sup> ] | Debye<br>Temp.<br>$\theta_D^b$<br>(295K)<br>[K] | Specific<br>Heat<br>(at const.<br>press.)<br>(298 K)<br>[J/(g·K)] | Coef. of<br>Thermal<br>Linear<br>Expansion<br>(298 K)<br>[10 <sup>-6</sup> K <sup>-1</sup> ] | Electrical<br>Resistivity<br>(295 K)<br>[μΩ·cm] | Thermal<br>Cond-<br>uctivity<br>(300 K)<br>[W/(m·K)] | Magnetic<br>Susceptibility <sup>e</sup><br>[10 <sup>-6</sup> SI] | Supercon-<br>ducting<br>Transition<br>Temperature <sup>f</sup><br>[K] |
|------------|------------------|----------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Manganese  | 54.94            | cubic<br>(complex)   | 7.43                                       | 410                                             | 0.479                                                             | 21.7                                                                                         | 144                                             | 7.82                                                 | 869.7                                                            |                                                                       |
| Mercury    | 200.59           | rhombohedral         | 13.534                                     | 110<br>(220 K)                                  | 0.139                                                             | 60.4                                                                                         | 95.9 °                                          | 83.4                                                 | -21.4                                                            | 4.154 <sup>b</sup>                                                    |
| Molybdenum | 95.94            | b.c.c.               | 10.2                                       | 380                                             | 0.251                                                             | 4.8                                                                                          | 5.39                                            | 138                                                  | 96.2                                                             | 0.915                                                                 |
| Nickel     | 58.69            | f.c.c.               | 8.90                                       | 390                                             | 0.445                                                             | 13.4                                                                                         | 7.01                                            | 90.7                                                 | ferro                                                            |                                                                       |
| Niobium    | 92.91            | b.c.c.               | 8.57                                       | 250                                             | 0.265                                                             | 7.3                                                                                          | 14.5 °                                          | 53.7                                                 | 241.1                                                            | 9.25                                                                  |
| Osmium     | 190.23           | h.c.p.               | 22.59                                      | 400                                             | 0.130                                                             | 5.1                                                                                          | 9.13 °                                          | 87.6                                                 | 16.3                                                             | 0.66                                                                  |
| Palladium  | 106.42           | f.c.c.               | 12.0                                       | 290                                             | 0.244                                                             | 11.8                                                                                         | 10.6                                            | 71.8                                                 | 766.6                                                            | 1.4                                                                   |
| Platinum   | 195.08           | f.c.c.               | 21.5                                       | 225                                             | 0.133                                                             | 8.8                                                                                          | 10.6                                            | 71.6                                                 |                                                                  |                                                                       |
|            |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | 266.7                                                            |                                                                       |
| Potassium  | 39.10            | b.c.c.               | 0.89                                       | 98                                              | 0.757                                                             | 83.3                                                                                         | 7.28                                            | 102.4                                                |                                                                  |                                                                       |
|            |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | 5.7                                                              |                                                                       |
| Rhenium    | 186.21           | h.c.p.               | 20.8                                       | 275                                             | 0.137                                                             | 6.2                                                                                          | 18.6 °                                          | 47.9                                                 | 94.9                                                             | 1.697                                                                 |
| Rhodium    | 102.91           | f.c.c.               | 12.4                                       | 350                                             | 0.243                                                             | 8.2                                                                                          | 4.78 <sup>c</sup>                               | 150                                                  |                                                                  |                                                                       |
|            |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | 154.9                                                            |                                                                       |

| Element   | Atomic<br>Weight | Crystal<br>Structure | Density<br>(298 K)<br>[g/cm <sup>3</sup> ] | Debye<br>Temp.<br>$\theta_D^b$<br>(295K)<br>[K] | Specific<br>Heat<br>(at const.<br>press.)<br>(298 K)<br>[J/(g·K)] | Coef. of<br>Thermal<br>Linear<br>Expansion<br>(298 K)<br>[10 <sup>-6</sup> K <sup>-1</sup> ] | Electrical<br>Resistivity<br>(295 K)<br>[μΩ·cm] | Thermal<br>Cond-<br>uctivity<br>(300 K)<br>[W/(m·K)] | Magnetic<br>Susceptibility <sup>e</sup><br>[10 <sup>-6</sup> SI] | Supercon-<br>ducting<br>Transition<br>Temperature <sup>f</sup><br>[K] |
|-----------|------------------|----------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Rubidium  | 85.47            | b.c.c.               | 1.53                                       | 61                                              | 0.364                                                             | 90                                                                                           | 12.9                                            | 58.2                                                 |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | 3.8                                                              |                                                                       |
| Ruthenium | 101.07           | h.c.p.               | 12.1                                       | 450                                             | 0.238                                                             | 6.4                                                                                          | 7.37 °                                          | 117                                                  | 59.4                                                             | 0.49                                                                  |
| Selenium  | 78.96            | hexagonal            | 4.81                                       | 250                                             | 0.293                                                             | 17.89 (   c)                                                                                 | $> 10^{12} d$                                   | 0.45 (   c)                                          | -17.1                                                            |                                                                       |
| (gray)    |                  |                      |                                            |                                                 |                                                                   | 74.09 (⊥c)                                                                                   | $\sim \! 10^{7 \ d}$                            | 0.13 (⊥c)                                            |                                                                  |                                                                       |
| Silicon   | 28.09            | diamond              | 2.328                                      | 700                                             | 0.702                                                             | 2.49                                                                                         | $> 10^{10} d$                                   | 124                                                  |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | -3.2                                                             |                                                                       |
| Silver    | 107.87           | f.c.c.               | 10.5                                       | 220                                             | 0.235                                                             | 18.9                                                                                         | 1.60                                            | 429                                                  |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | -23.8                                                            |                                                                       |
| Sodium    | 22.99            | b.c.c.               | 0.97                                       | 160                                             | 1.225                                                             | 71                                                                                           | 4.81                                            | 141                                                  |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | 8.5                                                              |                                                                       |
| Strontium | 87.62            | f.c.c.               | 2.64                                       | 140                                             | 0.306                                                             | 22.15                                                                                        | 13.3                                            | 35.3                                                 |                                                                  |                                                                       |
|           |                  |                      |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | 34.3                                                             |                                                                       |
| Tantalum  | 180.95           | b.c.c.               | 16.4                                       | 230                                             | 0.140                                                             | 6.3                                                                                          | 13.2                                            | 57.5                                                 | 177.5                                                            | 4.47                                                                  |
| Tellurium | 127.61           | hexagonal            | 6.23                                       | 180                                             | 0.197                                                             | 18.0 <sup>d</sup>                                                                            | $0.4 \times 10^{6}$ d                           | 3.38                                                 |                                                                  |                                                                       |
|           |                  | C                    |                                            |                                                 |                                                                   |                                                                                              |                                                 |                                                      | -23.4                                                            |                                                                       |

| Element   | Atomic<br>Weight | Crystal<br>Structure | Density<br>(298 K)<br>[g/cm <sup>3</sup> ] | Debye<br>Temp.<br>$\theta_D^b$<br>(295K)<br>[K] | Specific<br>Heat<br>(at const.<br>press.)<br>(298 K)<br>[J/(g·K)] | Coef. of<br>Thermal<br>Linear<br>Expansion<br>(298 K)<br>[10 <sup>-6</sup> K <sup>-1</sup> ] | Electrical<br>Resistivity<br>(295 K)<br>[μΩ·cm] | Thermal<br>Cond-<br>uctivity<br>(300 K)<br>[W/(m·K)] | Magnetic<br>Susceptibility <sup>e</sup><br>[10 <sup>-6</sup> SI] | Supercon-<br>ducting<br>Transition<br>Temperature <sup>f</sup><br>[K] |
|-----------|------------------|----------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Thallium  | 204.38           | h.c.p.               | 11.8                                       | 94                                              | 0.129                                                             | 29.9                                                                                         | 16.4 °                                          | 46.1                                                 | -36.4                                                            | 2.38                                                                  |
| Thorium   | 232.04           | f.c.c.               | 11.7                                       | 140                                             | 0.118                                                             | 11.0                                                                                         | 15 °                                            | 54.0                                                 | 61.4                                                             | 1.38                                                                  |
| Tin       | 118.71           | tetragonal           | 7.26                                       | 160                                             | 0.227                                                             | 22.0                                                                                         | 11.0 °                                          | 66.6                                                 | -28.9                                                            | 3.722                                                                 |
| Titanium  | 47.88            | h.c.p.               | 4.51                                       | 360                                             | 0.522                                                             | 8.6                                                                                          | 43.1 °                                          | 21.9                                                 | 178                                                              | 0.40                                                                  |
| Tungsten  | 183.84           | b.c.c.               | 19.3                                       | 315                                             | 0.132                                                             | 4.5                                                                                          | 5.33 °                                          | 174                                                  | 69.9                                                             | 0.0154                                                                |
| Uranium   | 238.03           | orthorhombic         | 19.1                                       | 160                                             | 0.116                                                             | 13.9                                                                                         | 25.7 °                                          | 27.6                                                 | 411.3                                                            | 0.2                                                                   |
| Vanadium  | 50.94            | b.c.c.               | 6.0                                        | 380                                             | 0.489                                                             | 8.4                                                                                          | 19.9                                            | 30.7                                                 | 429.5                                                            | 5.40                                                                  |
| Zinc      | 65.39            | h.c.p.               | 7.14                                       | 240                                             | 0.388                                                             | 30.2                                                                                         | 5.94                                            | 116                                                  | -12.6                                                            | 0.85                                                                  |
| Zirconium | 91.22            | h.c.p.               | 6.52                                       | 250                                             | 0.278                                                             | 5.7                                                                                          | 42.4                                            | 22.7                                                 | 107.5                                                            | 0.61                                                                  |

<sup>a</sup> Unless otherwise noted, data are from the CRC Handbook of Chemistry and Physics (2002), 83<sup>st</sup> edition, CRC Press, Boca Raton, Florida.

<sup>b</sup> Values of the Debye temperature θ<sub>D</sub> are from G. K. White (1987), *Experimental Techniques in Low-Temperature Physics*, Oxford University Press, determined from specific heat data in the range θ<sub>D</sub>/2–θ<sub>D</sub>. These data were compiled from the *American Institute of Physics Handbook* (1972), 3rd edition. McGraw-Hill; Touloukian et al., ed. (1970–1977), *Thermophysical Properties of Matter*, Plenum Press; *Landolt–Börnstein*, Springer-Verlag, Berlin, 1968, 1971, etc.; and K. A. Gschneidner (1964), *Solid State Phys.* **16**, 275–476.

<sup>c</sup> American Inst. of Physics Handbook (1972), 3<sup>rd</sup> edition, coordinating ed. D. E. Gray, Table 9d, p. 9-39, McGraw Hill, NY.

<sup>d</sup> G. K. White. and P. J. Meeson. (2002), *Experimental Techniques in Low-Temperature Physics*, 4<sup>th</sup> edition, Oxford University Press.

- <sup>e</sup> Magnetic susceptibility data were recalculated from molar susceptibilities given in the *CRC Handbook of Chemistry and Physics* (2000), 81<sup>st</sup> edition, CRC Press, Boca Raton, Florida; and from compilations given in *Landolt–Börnstein*, *Numerical Data and Functional Relationships in Science and Technology*, New Series, II/16 (1986); III/19, subvolumes a to i2 (1986–1992); and II/2, II/8, II10, II11, and II12a, (1966-1984), Springer-Verlag, Heidelberg; *Tables de Constantes et Donnees Numerique* (1957), Vol. 7, *Relaxation paramagnetique*, Masson, Paris.
- <sup>f</sup> Superconducting critical temperatures are from B. W. Roberts (1978), "Properties of selected superconductive materials," 1978 Supplement, *NBS Technical Note* **983**, U.S. Government Printing Office, Washington, D.C.; tabulated in the *CRC Handbook of Chemistry and Physics* (2000), 81<sup>st</sup> edition, CRC Press, Boca Raton, Florida. Note that thin films of these elements generally have higher critical temperatures than those listed here for bulk materials (see the CRC handbook).

### A6.2 Specific heat vs. temperature of technical materials (Sec. 6.1)

To convert these values of specific heat at constant pressure to *volumetric* heat capacity, multiply each value by the density of the material (densities of elements are given in Appendix A6.1).

| Material                                          | 4 K                  | 10 K    | 20 K   | 30K   | 50K   | 77 K  | 100 K | 150 K | 200 K | 300 K |
|---------------------------------------------------|----------------------|---------|--------|-------|-------|-------|-------|-------|-------|-------|
| Metals                                            |                      |         |        |       |       |       |       |       |       |       |
| Al <sup>a</sup>                                   | 0.00026              | 0.00140 | 0.0089 | 0.032 | 0.142 | 0.336 | 0.481 | 0.684 | 0.797 | 0.902 |
| Cu <sup>a, b</sup>                                | 0.00009              | 0.00088 | 0.0070 | 0.027 | 0.097 | 0.192 | 0.252 | 0.323 | 0.356 | 0.386 |
| Fe <sup>a</sup>                                   | 0.00038              | 0.00124 | 0.0045 | 0.012 | 0.055 | 0.144 | 0.216 | 0.323 | 0.384 | 0.447 |
| In <sup>a</sup>                                   | 0.00095              | 0.0155  | 0.061  | 0.108 | 0.162 | 0.191 | 0.203 | 0.219 | 0.225 | 0.233 |
| Nb <sup>a</sup>                                   | 0.00040              | 0.00220 | 0.0113 | 0.035 | 0.099 | 0.167 | 0.202 | 0.239 | 0.254 | 0.268 |
| Ni <sup>a</sup>                                   | 0.00050              | 0.00162 | 0.0058 | 0.017 | 0.068 | 0.163 | 0.232 | 0.328 | 0.383 | 0.445 |
| Si <sup>a</sup>                                   | 0.000017             | 0.00028 | 0.0034 | 0.017 | 0.079 | 0.177 | 0.259 | 0.425 | 0.556 | 0.714 |
| Ti <sup>a</sup>                                   | 0.00032              | 0.00126 | 0.0070 | 0.025 | 0.099 | 0.218 | 0.300 | 0.407 | 0.465 | 0.522 |
| W <sup>a</sup>                                    | 0.00004              | 0.00023 | 0.0019 | 0.008 | 0.033 | 0.068 | 0.089 | 0.114 | 0.125 | 0.136 |
| <u>Alloys</u>                                     |                      |         |        |       |       |       |       |       |       |       |
| Al 2024 <sup>e</sup>                              |                      |         | _      |       |       | 0.478 | 0.534 | 0.639 | 0.736 | 0.855 |
| Al-6061-T6 <sup>f</sup>                           | 0.00029              | 0.00157 | 0.0089 | 0.033 | 0.149 | 0.348 | 0.492 | 0.713 | 0.835 | 0.954 |
| Brass (65wt%Cu-35wt%Zn <sup>g</sup>               |                      |         |        |       |       |       |       |       |       |       |
| (yellow brass)                                    | 0.00015 <sup>e</sup> |         | 0.011  | 0.041 | 0.118 | 0.216 | 0.270 | 0.330 | 0.360 | 0.377 |
| Constantan (60wt%Cu-                              |                      |         |        |       |       |       |       |       |       |       |
| 40wt%Ni) <sup>a</sup>                             | 0.00049              | 0.00169 | 0.0068 | 0.022 | 0.083 | 0.175 | 0.238 | 0.322 | 0.362 | 0.410 |
| Inconel (77wt%Ni-15wt%Cr-                         |                      |         |        |       |       |       |       |       |       |       |
| 7wt%Fe) <sup>e</sup>                              |                      |         |        |       |       | 0.275 | 0.291 | 0.334 | 0.369 | 0.427 |
| Stainless Steel 304L $^{\rm f}$                   | 0.0017               | 0.0047  | 0.016  |       | —     | —     | —     | —     |       | —     |
| Stainless Steel 310 <sup>d</sup>                  | 0.0020               | 0.0052  | 0.017  | 0.01  | 0.10  | 0.20  | 0.25  | 0.35  | 0.40  | 0.48  |
| Ti-6wt%Al-4wt%V <sup>e</sup>                      |                      | _       |        | 0.007 | 0.098 | 0.217 | 0.300 | 0.410 | 0.477 | 0.529 |
| Polymers & Composites                             |                      |         |        |       |       |       |       |       |       |       |
| Epoxy (Stycast 2850FT <sup>™</sup> ) <sup>h</sup> | 0.0005               | 0.0063  | 0.0226 | 0.042 | 0.083 | 0.154 | 0.240 |       |       | _     |
| Epoxy (CY221) <sup>c</sup>                        |                      | 0.022   | 0.085  | 0.170 | 0.270 | 0.400 | 0.480 |       | 1.000 | 1.300 |

### Specific Heat $C_P$ [J/(g·K)] = [10<sup>-3</sup> J/(kg·K)]

| Material                                                | 4 K     | 10 K    | 20 K   | 30K   | 50K   | 77 K  | 100 K | 150 K | 200 K | 300 K |
|---------------------------------------------------------|---------|---------|--------|-------|-------|-------|-------|-------|-------|-------|
| G-10CR <sup>f</sup> glass/resin                         | 0.0020  | 0.0154  | 0.047  | 0.081 | 0.149 | 0.239 | 0.317 | 0.489 | 0.664 | 0.999 |
| Glass/resin (S 901Glass/                                |         |         |        |       |       |       |       |       |       |       |
| NASA Resin 2) <sup>i</sup>                              | 0.00064 | 0.0067  | 0.028  | 0.050 | 0.094 | 0.169 | 0.262 | 0.56  | 0.96  | 1.94  |
| Plexiglas <sup>TM</sup> (PMMA) <sup>c</sup>             | _       | 0.017   | 0.080  | 0.147 | 0.280 | 0.420 | 0.550 |       | 0.920 | —     |
| Polyamide (Nylon <sup>TM</sup> ) <sup>f</sup>           | 0.0016  | 0.020   | 0.100  | 0.200 | 0.380 | 0.574 | 0.717 | 0.984 | 1.21  | 1.62  |
| Polyimide (Kapton <sup>TM</sup> ) <sup>f</sup>          | 0.00079 | 0.0117  | 0.0579 | 0.116 | 0.224 | 0.338 | 0.414 | 0.537 | 0.627 | 0.755 |
| Teflon <sup>™</sup> (PTFE) <sup>°</sup>                 | _       | 0.026   | 0.079  | 0.126 | 0.210 | 0.310 | 0.392 | 0.550 | 0.677 | 0.870 |
| Ceramics and Nonmetals                                  |         |         |        |       |       |       |       |       |       |       |
| AlN <sup>e</sup>                                        | _       | _       | —      |       |       | 0.074 | 0.139 | 0.305 | 0.471 | 0.739 |
| Apiezon $N^{TM f}$                                      | 0.00203 | 0.0243  | 0.0925 | 0.172 | 0.332 | 0.522 | 0.657 | 0.913 | 1.201 | _     |
| Carbon (diamond) <sup>a</sup>                           | _       | 0.00002 | 0.0001 | 0.000 | 0.002 | 0.008 | 0.020 | 0.084 | 0.195 | 0.518 |
| Ice <sup>a</sup>                                        | 0.00098 | 0.0152  | 0.114  | 0.229 | 0.440 | 0.689 | 0.882 | 1.230 | 1.570 | _     |
| MgO <sup>a</sup>                                        |         |         | 0.0022 | 0.006 | 0.024 | 0.101 | 0.208 | 0.465 | 0.680 | 0.940 |
| Pyrex <sup>TM a</sup>                                   | 0.00020 | 0.0042  | _      | _     |       | _     | _     | _     | _     | _     |
| Sapphire (Al <sub>2</sub> O <sub>3</sub> ) <sup>e</sup> | _       | 0.00009 | 0.0007 | 0.003 | 0.015 | 0.060 | 0.126 | 0.314 | 0.502 | 0.779 |
| SiC <sup>e</sup>                                        |         |         | _      |       |       | 0.052 | 0.107 | 0.253 | 0.405 | 0.676 |
| Silica glass (SiO <sub>2</sub> ), Quartz                |         |         |        |       |       |       |       |       |       |       |
| Crystal (SiO <sub>2</sub> ) <sup>a</sup>                | —       | 0.00070 | 0.0113 | 0.035 | 0.097 | 0.185 | 0.261 | 0.413 | 0.543 | 0.745 |
| SrTiO <sub>3</sub> <sup>e</sup>                         | —       |         |        | _     |       | 0.181 | 0.246 | 0.358 | 0.439 | 0.536 |
| ZrO <sub>2</sub> <sup>e</sup>                           | —       |         | —      | —     |       | 0.100 | 0.153 | 0.261 | 0.347 | 0.456 |

<sup>a</sup> R. J. Corruccini and J. J. Gniewek (1960), National Bureau of Standards Monograph 21, U.S. Government Printing Office, Washington, D.C.

<sup>b</sup> C. Y. Ho and A. Cezairliyan (1988), *Specific Heat of Solids*, Hemisphere Publishing Corp., New York.

- <sup>c</sup> G. Hartwig (1994), Polymer Properties at Room and Cryogenic Temperatures, Plenum Press, New York,
- <sup>d</sup> L. L. Sparks (1983), Chapter 2 in *Materials at Low Temperatures*, R. P. Reed and A. F. Clark, eds., ASM International, Metals Park, Ohio.
- <sup>e</sup> Y. S. Touloukian and E. H. Buyco (1970), *Specific Heat*, Vols. 4 and 5, Plenum Press, New York.
- <sup>f</sup> R. Radebaugh et al. (2003), <u>http://www.cryogenics.nist.gov/</u> and the references listed therein.
- <sup>g</sup> G. K. White and P. J. Meeson (2002), *Experimental Techniques in Low-Temperature Physics*, 4<sup>th</sup> edition, Oxford University Press.
- <sup>h</sup> C. A. Swenson (1997), Rev. Sci. Instrum. 68, 1312–1315.
- <sup>i</sup> E. W. Collings and R. D. Smith (1978), *Adv. in Cryog. Eng.* 24, 290–296.

# A6.3 Debye model values of the molar heat capacity and molar internal energy as a function of temperature (Sections 6.1.2 and 6.1.3)

Tabulated values of the molar heat capacity are at constant volume, designated as  $C_V$ . Molar internal energy U is obtained by integrating the heat capacity, tabulated here as  $(U-U_0)/T \equiv T^{-1} \int_0^T C_V dT$  and plotted in Fig. 6.2.

Values of the Debye temperature  $\theta_D$  are tabulated for common elements in Appendix A6.1.

| $T/\Theta_{ m D}$ | $\theta_{\rm D}/T$ | C <sub>V</sub><br>[J/(mol·K)] | $(U-U_{\rm o})/T \equiv T^{-1} \int_0^T C_{\rm V} \mathrm{d}T$<br>[J/(mol·K)] |
|-------------------|--------------------|-------------------------------|-------------------------------------------------------------------------------|
| x                 | 0.0                | 24.94                         | 24.94                                                                         |
| 10                | 0.1                | 24.93                         | 24.02                                                                         |
| 5                 | 0.2                | 24.89                         | 23.12                                                                         |
| 2.5               | 0.4                | 24.74                         | 21.40                                                                         |
| 2.0               | 0.5                | 24.63                         | 20.58                                                                         |
| 1.667             | 0.6                | 24.50                         | 19.78                                                                         |
| 1.25              | 0.8                | 24.16                         | 18.25                                                                         |
| 1.0               | 1.0                | 23.74                         | 16.82                                                                         |
| 0.833             | 1.2                | 23.24                         | 15.48                                                                         |
| 0.714             | 1.4                | 22.66                         | 14.24                                                                         |
| 0.625             | 1.6                | 22.02                         | 13.08                                                                         |
| 0.556             | 1.8                | 21.33                         | 12.00                                                                         |
| 0.500             | 2.0                | 20.59                         | 11.00                                                                         |
| 0.400             | 2.5                | 18.60                         | 8.83                                                                          |
| 0.333             | 3.0                | 16.53                         | 7.07                                                                          |
| 0.286             | 3.5                | 14.48                         | 5.66                                                                          |
| 0.250             | 4.0                | 12.55                         | 4.53                                                                          |
| 0.222             | 4.5                | 10.78                         | 3.64                                                                          |
| 0.200             | 5.0                | 9.195                         | 2.93                                                                          |
| 0.1667            | 6.0                | 6.625                         | 1.94                                                                          |
| 0.143             | 7.0                | 4.760                         | 1.31                                                                          |
| 0.125             | 8.0                | 3.447                         | 0.912                                                                         |
| 0.111             | 9.0                | 2.531                         | 0.654                                                                         |
| 0.100             | 10.0               | 1.891                         | 0.481                                                                         |

| $T/\Theta_{\rm D}$ | $\theta_{\rm D}/T$ | C <sub>V</sub><br>[J/(mol·K)] | $(U-U_0)/T \equiv T^{-1} \int_0^T C_V  \mathrm{d}T$<br>[J/(mol·K)] |
|--------------------|--------------------|-------------------------------|--------------------------------------------------------------------|
| 0.0909             | 11.0               | 1.440                         | 0.363                                                              |
| 0.0833             | 12.0               | 1.117                         | 0.281                                                              |
| 0.0769             | 13.0               | 0.882                         | 0.221                                                              |
| 0.0714             | 14.0               | 0.707                         | 0.177                                                              |
| 00625              | 16.0               | 0.474                         | 0.119                                                              |
| 0.0556             | 18.0               | 0.333                         | 0.083                                                              |
| 0.0500             | 20.0               | 0.243                         | 0.061                                                              |
| 0.0400             | 25.0               | 0.124                         | 0.031                                                              |
| 0.0333             | 30.0               | 0.072                         | 0.018                                                              |
|                    |                    |                               |                                                                    |

<sup>a</sup> From G. T. Furukawa, T. B. Douglas, and N. Pearlman (1972), Chapter 4e in *American Institute of Physics Handbook*, McGraw–Hill.

A6.4 Thermal expansion/contraction of technical materials (Sec. 6.2)

The total linear contraction from room temperature to the indicated temperature T is defined as

$$\Delta L/L \equiv (L_{293\rm K} - L_T)/L_{293\rm K}$$

The coefficient of linear expansion at room temperature is defined as

$$\alpha \equiv (1/L) \, \mathrm{d}L/\mathrm{d}T.$$

Since the thermal expansion/contraction is approximately linear above room temperature, the total contraction from an upper reference temperature  $T_u$  above room temperature (such as soldering temperature) to a low temperature *T* can be determined approximately from

$$\Delta L/L_{T_u-T} = \Delta L/L_{293K-T} + (\alpha_{293K}) (T_u - 293 \text{ K}).$$

Data on Invar, glasses, ceramics, and other materials having a very low thermal contraction are given in Figs. 6.8 and 6.9. Thermal contraction data at 4 K and 77 K for a few additional materials are tabulated in Appendixes A7.4 and A7.5.

| Material                             | Δ <i>L/L</i><br>at 4 K<br>[%] | Δ <i>L/L</i><br>at 40 K<br>[%] | Δ <i>L/L</i><br>at 77 K<br>[%] | Δ <i>L/L</i><br>at 100 K<br>[%] | Δ <i>L/L</i><br>at 150 K<br>[%] | Δ <i>L/L</i><br>at 200 K<br>[%] | Δ <i>L/L</i><br>at 250 K<br>[%] | α<br>at 293 K<br>[10 <sup>-6</sup> K <sup>-1</sup> ] |
|--------------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------------|
| <u>Metals</u>                        |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| Ag <sup>b</sup>                      | 0.413                         | 0.405                          | 0.370                          | 0.339                           | 0.259                           | 0.173                           | 0.082                           | 18.5 <sup>h</sup>                                    |
| Al <sup>a</sup>                      | 0.415                         | 0.413                          | 0.393                          | 0.370                           | 0.295                           | 0.201                           | 0.097                           | 23.1 <sup>b</sup>                                    |
| Au <sup>b</sup>                      | 0.324                         | 0.313                          | 0.281                          | 0.256                           | 0.195                           | 0.129                           | 0.061                           | 14.1                                                 |
| Be <sup>b</sup>                      | 0.131                         | 0.131                          | 0.130                          | 0.128                           | 0.115                           | 0.087                           | 0.045                           | 11.3 <sup>d</sup>                                    |
| Cu <sup>a</sup>                      | 0.324                         | 0.322                          | 0.302                          | 0.282                           | 0.221                           | 0.148                           | 0.070                           | 16.7 <sup> i</sup>                                   |
| Fe <sup>a</sup>                      | 0.198                         | 0.197                          | 0.190                          | 0.181                           | 0.148                           | 0.102                           | 0.049                           | 11.6 <sup>b</sup>                                    |
| Hg <sup>b</sup> ,*                   | 0.843                         | 0.788                          | 0.788                          | 0.592                           | 0.396                           | 0.176                           | *                               | 57.2 *                                               |
| In <sup>b</sup>                      | 0.706                         | 0.676                          | 0.602                          | 0.549                           | 0.421                           | 0.282                           | 0.135                           | 32.0                                                 |
| Mo <sup>b</sup>                      | 0.095                         | 0.094                          | 0.090                          | 0.084                           | 0.067                           | 0.046                           | 0.022                           | 4.8 <sup>d</sup>                                     |
| Nb <sup>a</sup>                      | 0.143                         | 0.141                          | 0.130                          | 0.121                           | 0.094                           | 0.063                           | 0.030                           | 7.3 <sup>d</sup>                                     |
| Ni <sup>a</sup>                      | 0.224                         | 0.223                          | 0.212                          | 0.201                           | 0.162                           | 0.111                           | 0.053                           | 13.4 <sup>d</sup>                                    |
| Pb <sup>b</sup>                      | 0.708                         | 0.667                          | 0.578                          | 0.528                           | 0.398                           | 0.263                           | 0.124                           | 29                                                   |
| Ta <sup>b</sup>                      | 0.143                         | 0.141                          | 0.128                          | 0.117                           | 0.089                           | 0.059                           | 0.028                           | 6.6                                                  |
| Sn <sup>b</sup> (white) <sup>r</sup> | 0.447                         | 0.433                          | 0.389                          | 0.356                           | 0.272                           | 0.183                           | 0.086                           | 20.5                                                 |
| Ti <sup>a</sup>                      | 0.151                         | 0.150                          | 0.143                          | 0.134                           | 0.107                           | 0.073                           | 0.035                           | 8.3 <sup>b</sup>                                     |
| W <sup>b</sup>                       | 0.086                         | 0.085                          | 0.080                          | 0.075                           | 0.059                           | 0.040                           | 0.019                           | 4.5                                                  |
| <u>Alloys</u>                        |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| Al-6061-T6 <sup>c</sup>              | 0.414                         | 0.412                          | 0.389                          | 0.365                           | 0.295                           | 0.203                           | 0.097                           | 22.5                                                 |
| Brass (65%Cu-35%Zn) <sup>b</sup>     |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| (yellow brass)                       | 0.384                         | 0.380                          | 0.353                          | 0.326                           | 0.253                           | 0.169                           | 0.080                           | 19.1 <sup>b</sup>                                    |
| Constantan (50Cu-50Ni) <sup>b</sup>  | —                             | 0.264                          | 0.249                          | 0.232                           | 0.183                           | 0.124                           | 0.043                           | 13.8 <sup>b</sup>                                    |
| Cu-2%Be-0.3%Co (Beryll-              |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| ium copper, Berylco 25) <sup>b</sup> | 0.316                         | 0.315                          | 0.298                          | 0.277                           | 0.219                           | 0.151                           | 0.074                           | 18.1 <sup>b</sup>                                    |
| Fe–9%Ni <sup>a</sup>                 | 0.195                         | 0.193                          | 0.188                          | 0.180                           | 0.146                           | 0.100                           | 0.049                           | 11.5                                                 |
| Hastelloy C <sup>q</sup>             | 0.218                         | 0.216                          | 0.204                          | 0.193                           | 0.150                           | 0.105                           | 0.047                           | 10.9 <sup>c</sup>                                    |
| Inconel 718 <sup>a</sup>             | 0.238                         | 0.236                          | 0.224                          | 0.211                           | 0.167                           | 0.114                           | 0.055                           | 13.0 <sup>k</sup>                                    |
| Invar (Fe–36%Ni) <sup>a</sup>        | —                             | 0.040                          | 0.038                          | 0.036                           | 0.025                           | 0.016                           | 0.009                           | 3.0 <sup>k</sup>                                     |
| 50%Pb–50%Sn solder <sup>a</sup>      | 0.514                         | 0.510                          | 0.480                          | 0.447                           | 0.343                           | 0.229                           | 0.108                           | 23.4 <sup>d</sup>                                    |

Thermal Expansion/Contraction of Technical Materials Definitions:  $\Delta L/L \equiv (L_{293K} - L_T)/L_{293K}$ ;  $\alpha \equiv (1/L) dL/dT$ 

| Material                                          | Δ <i>L/L</i><br>at 4 K<br>[%] | Δ <i>L/L</i><br>at 40 K<br>[%] | Δ <i>L/L</i><br>at 77 K<br>[%] | Δ <i>L/L</i><br>at 100 K<br>[%] | Δ <i>L/L</i><br>at 150 K<br>[%] | Δ <i>L/L</i><br>at 200 K<br>[%] | Δ <i>L/L</i><br>at 250 K<br>[%] | α<br>at 293 K<br>[10 <sup>-6</sup> K <sup>-1</sup> ] |
|---------------------------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------------|
| Stainless Steel (AISI 304) <sup>b</sup>           | 0.296                         | 0.296                          | 0.281                          | 0.261                           | 0.206                           | 0.139                           | 0.066                           | 15.1 <sup>1</sup>                                    |
| Stainless Steel (AISI 310) <sup>b</sup>           | —                             |                                |                                | 0.237                           | 0.187                           | 0.127                           | 0.061                           | 14.5                                                 |
| Stainless Steel (AISI 316) <sup>b</sup>           | 0.297                         | 0.296                          | 0.279                          | 0.259                           | 0.201                           | 0.136                           | 0.065                           | 15.2 <sup>1</sup>                                    |
| Ti–6Al–4V <sup>a</sup>                            | 0.173                         | 0.171                          | 0.163                          | 0.154                           | 0.118                           | 0.078                           | 0.036                           | 8.0 <sup>m</sup>                                     |
| Superconductors                                   |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| Bi-2212 $a,b$ -axes <sup>u,y</sup>                | 0.152                         | 0.150                          | 0.139                          | 0.132                           | 0.106                           | 0.074                           | 0.036                           | 8.3                                                  |
| Bi-2212 <i>c</i> -axis <sup>u,y</sup>             | 0.295                         | 0.289                          | 0.266                          | 0.250                           | 0.199                           | 0.136                           | 0.064                           | 15.1                                                 |
| Bi (2223)/Ag tape <sup>g</sup>                    |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| $(\geq 2^{nd} \text{ cool-down})$                 | —                             | 0.31                           | 0.30                           | 0.28                            | 0.22                            | 0.15                            | 0.07                            | 13                                                   |
| Bi-2223 <i>a,b</i> -axes <sup>z,u,y</sup>         | 0.15                          | 0.15                           | 0.14                           | 0.13                            | 0.11                            | 0.07                            | 0.04                            | 8.3                                                  |
| Bi-2223 <i>c</i> -axis <sup>z,u,y</sup>           | 0.30                          | 0.29                           | 0.27                           | 0.25                            | 0.20                            | 0.14                            | 0.06                            | 15                                                   |
| Bi-2223/61%Ag-alloy tape <sup>w,x</sup>           |                               |                                | 0.24                           |                                 |                                 |                                 |                                 |                                                      |
| Nb <sub>3</sub> Sn <sup>a</sup>                   | 0.16                          | 0.16                           | 0.14                           | 0.13                            | 0.095                           | 0.065                           | 0.03                            | 7.6 <sup>t</sup>                                     |
| Nb <sub>3</sub> Sn(10vol%)/Cu wire <sup>s</sup>   | 0.30                          |                                | 0.28                           |                                 |                                 |                                 |                                 |                                                      |
| Nb–45 Ti <sup>a</sup>                             | 0.188                         | 0.184                          | 0.169                          | 0.156                           | 0.117                           | 0.078                           | 0.038                           | 8.2                                                  |
| Nb–Ti/Cu wire <sup>a</sup>                        | 0.265                         | 0.262                          | 0.247                          | 0.231                           | 0.179                           | 0.117                           | 0.054                           | 12.5                                                 |
| YBCO <i>a</i> -axis <sup>f</sup>                  | —                             | —                              | 0.12                           | 0.12                            | 0.10                            | 0.070                           | 0.04                            | 7.4                                                  |
| YBCO <i>b</i> -axis <sup>f</sup>                  | —                             | —                              | 0.16                           | 0.15                            | 0.13                            | 0.10                            | 0.05                            | 9.6                                                  |
| YBCO <i>c</i> -axis <sup>f</sup>                  |                               | _                              | 0.34                           | 0.33                            | 0.25                            | 0.17                            | 0.09                            | 17.7                                                 |
| <u>Polymers</u>                                   |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| Epoxy <sup>a</sup>                                | 1.16                          | 1.11                           | 1.028                          | 0.959                           | 0.778                           | 0.550                           | 0.277                           | 66                                                   |
| Epoxy (Stycast 2850FT <sup>™</sup> ) <sup>e</sup> | 0.44                          | 0.43                           | 0.40                           | 0.38                            | 0.32                            | 0.225                           | 0.12                            | 28                                                   |
| CTFE (Teflon <sup>TM</sup> ) <sup>a</sup>         | 1.135                         | 1.070                          | 0.971                          | 0.900                           | 0.725                           | 0.517                           | 0.269                           | 67 <sup>b</sup>                                      |
| TFE (Teflon <sup>TM</sup> ) <sup>a</sup>          | 2.14                          | 2.06                           | 1.941                          | 1.85                            | 1.600                           | 1.24                            | 0.750                           | 250 <sup>n</sup>                                     |
| PMMA (Plexiglas <sup>TM</sup> ) <sup>a</sup>      | 1.22                          | 1.16                           | 1.059                          | 0.99                            | 0.820                           | 0.59                            | 0.305                           | 75 °                                                 |
| Polyamide (Nylon <sup>TM</sup> ) <sup>a</sup>     | 1.389                         | 1.352                          | 1.256                          | 1.172                           | 0.946                           | 0.673                           | 0.339                           | 80                                                   |
| Polyimide (Kapton <sup>TM</sup> ) <sup>c</sup>    | 0.44                          | 0.44                           | 0.43                           | 0.41                            | 0.36                            | 0.29                            | 0.16                            | 46                                                   |
| <u>Composites</u> <sup>a</sup>                    |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| G-10CR epoxy/glass                                |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| (    glass fibers)                                | 0.241                         | 0.234                          | 0.213                          | 0.197                           | 0.157                           | 0.108                           | 0.052                           | 12.5                                                 |
| G-10CR epoxy/glass                                |                               |                                |                                |                                 |                                 |                                 |                                 |                                                      |
| (normal)                                          | 0.706                         | 0.690                          | 0.642                          | 0.603                           | 0.491                           | 0.346                           | 0.171                           | 41 <sup>p</sup>                                      |

| Material                                 | Δ <i>L/L</i><br>at 4 K<br>[%] | Δ <i>L/L</i><br>at 40 K<br>[%] | Δ <i>L/L</i><br>at 77 K<br>[%] | Δ <i>L/L</i><br>at 100 K<br>[%] | Δ <i>L/L</i><br>at 150 K<br>[%] | Δ <i>L/L</i><br>at 200 K<br>[%] | Δ <i>L/L</i><br>at 250 K<br>[%] | $lpha$ at 293 K $[10^{-6} \text{ K}^{-1}]$ |
|------------------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------------|
| Ceramics & Nonmetals                     |                               |                                |                                |                                 |                                 |                                 |                                 |                                            |
| Al N ( $\parallel a$ -axis) <sup>q</sup> |                               |                                | 0.032                          | 0.031                           | 0.028                           | 0.020                           | 0.011                           | 3.7                                        |
| Al N ( $\parallel c$ -axis) <sup>q</sup> | _                             |                                | 0.025                          | 0.025                           | 0.022                           | 0.017                           | 0.009                           | 3.0                                        |
| C (diamond) <sup>b</sup>                 | 0.024                         | 0.024                          | 0.024                          | 0.024                           | 0.023                           | 0.019                           | 0.011                           | 1.0                                        |
| Glass (Pyrex <sup>TM</sup> )             | 0.055                         | 0.057                          | 0.054                          | 0.050                           | 0.040                           | 0.027                           | 0.013                           | 3.0 °                                      |
| MgO <sup>b</sup>                         | 0.139                         | 0.139                          | 0.137                          | 0.133                           | 0.114                           | 0.083                           | 0.042                           | 10.2                                       |
| Quartz (   optic axis) b                 | _                             |                                |                                | 0.104                           | 0.085                           | 0.061                           | 0.030                           | 7.5                                        |
| Sapphire $(Al_2O_3)^m$ ( $  c-axis)$     | _                             | 0.079                          | 0.078                          | 0.075                           | 0.066                           | 0.048                           | 0.025                           | 5.4 <sup>q</sup>                           |
| Si <sup>b</sup>                          | 0.022                         | 0.022                          | 0.023                          | 0.024                           | 0.024                           | 0.019                           | 0.010                           | 2.32                                       |
| α-SiC (polycrystalline) <sup>q</sup>     |                               | —                              | 0.030                          | 0.030                           | 0.029                           | 0.024                           | 0.013                           | 3.7                                        |
| Silica glass <sup>b</sup>                | -0.008                        | -0.005                         | -0.002                         | -0.0001                         | 0.002                           | 0.002                           | 0.002                           | 0.4                                        |

\* For mercury, all data are referenced to its solidification temperature, 234 K.

- <sup>a</sup> A. F. Clark (1983), Chapter 3 in *Materials at Low Temperatures*, ASM International, Materials Park, Ohio.
- <sup>b</sup> R. J. Corruccini, and J. J. Gniewek. (1961), *Thermal Expansion of Technical Solids at Low Temperatures*, National Bureau of Standards Monograph 29, U.S. Government Printing Office, Washington, D.C.
- <sup>c</sup> R. Radebaugh. et al. (2001), <u>http://www.cryogenics.nist.gov/</u> and the references listed therein.
- <sup>d</sup> CRC Handbook of Chemistry and Physics (2001), 82<sup>nd</sup> edition, CRC Press, Boca Raton, Florida.
- <sup>e</sup> C. A. Swenson (1997), Rev. Sci. Instrum. 68, 1312–1315.
- <sup>f</sup> Calculated from data by H. You, J. D. Axe, X. B. Kan, S. Hashimoto, S. C. Moss, J. Z. Liu, G. W. Crabtree, and D. J. Lam (1988), *Phys. Rev.* B38, 9213–9216.
- <sup>g</sup> N. Yamada, K. Nara, M. Okaji, T. Hikata, T. Kanedo, and N. Sadakata (1998). Cryogenics 38, 397–399.
- <sup>h</sup> V. J. Johnson, ed. (1961). Properties of Materials at Low Temperature, Phase 1, U.S. Government Printing Office.
- <sup>i</sup> T. A. Hahn (1970). J. Appl. Phys. 41, 5096–5101.
- <sup>j</sup> N. J. Simon, E. S. Drexler, and R. P. Reed (1992), Properties of Copper and Copper Alloys at Cryogenic Temperatures, NIST Monograph 177, U.S. Government Printing Office, Washington, D.C.; N. Cheggour and D. P. Hampshire, Rev. Sci. Instr. 71, 4521–4529 (2000).
- <sup>k</sup> A. F. Clark (1968), Cryogenics 8, 282–289.
- <sup>1</sup> Handbook on Materials for Superconducting Machinery (1974, 1976), National Bureau of Standards, U. S. Government Printing Office, Washington, D. C.
- <sup>m</sup> V. Arp, J. H. Wilson, L. Winrich, and P. Sikora (1962), Cryogenics 2, 230–235.
- <sup>n</sup> R. K. Kirby (1956), J. Res. Natl. Bur. Stand. 57, 91-94.
- <sup>o</sup> H. L. Laquer and E. L. Head (1952). *Low Temperature Thermal Expansion of Plastics*. AECU-2161, Technical Information Service A.E.C., Oak Ridge, Tennessee.
- <sup>p</sup> A. F. Clark, G. Fujii, and M. A. Ranney (1981), *IEEE Trans. Magn.* MAG-17, 2316–2319.
- <sup>q</sup> Y. S. Touloukian, *Thermal Expansion* **12**, 1248.
- <sup>r</sup> Tin is anisotropic. Mean values were calculated as  $1/3(||) + 2/3(\perp)$ , where (||) and ( $\perp$ ) signify the contraction parallel and perpendicular to the tetragonal axis. White tin is the ordinary ductile variety; it may transform

to brittle grey tin (with a diamond-type lattice) at low temperatures, but usually it does not because of impurity stabilization. (See ref. b for more information.)

- 133 -

- <sup>s</sup> L. F. Goodrich, S. L. Bray, and T. C. Stauffer (1990), Adv. Cryog. Eng. (Mater.) 36A, 117-124.
- <sup>t</sup> D. S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch (1980), *J. Appl. Phys.* **51**, 2748.
- <sup>u</sup> M. Okaji, K. Nara, H. Kato, K. Michishita, and Y. Kubo (1994), *Cryogenics* 34, 163.
- <sup>v</sup> S. Ochiai, K. Hayashi, and K. Osamura (1991), Cryogenics 31, 959.
- <sup>w</sup> E. Harley (2004), American Superconductor Corp., personal communication.
- <sup>x</sup> J. P. Voccio, O. O. Ige, S. J. Young, and C. C. Duchaine (2001). *IEEE Trans. Appl. Supercon.* 11, 3070–3073.
- <sup>y</sup> M. Mouallem-Bahout, J. Gaudé, G. Calvarin, J.-R. Gavarri, and C. Carel, (1994), Mater. Lett. 18, 181-185.
- <sup>z</sup> Data are for Bi-2212 oriented crystals, but the atomic structures of the Bi-2223 and Bi-2212 phases are close enough that the Bi-2212 crystal data should approximately apply to both.

The *ideal* resistivity  $\rho_i(T)$  is tabulated below for *ideally* pure metals. The *total* resistivity  $\rho(T)$  of *nearly* pure metals is approximated by summing the temperature-dependent ideal resistivity  $\rho_i(T)$  and the temperature-*in*dependent residual resistivity  $\rho_{res}$  (that arises from defects). This is expressed as Matthiessen's rule:

$$\rho(T) = \rho_{\rm res} + \rho_{\rm i}(T).$$

(Deviations from Matthiessen's rule are briefly described in Sec. 6.3.4.)

In nearly pure metals,  $\rho_{res}$  is highly variable from specimen to specimen, because  $\rho_{res}$  depends on trace impurity levels and cold-work conditions. Therefore, it must be measured on an individual material basis (typically with a dip test in liquid helium) or estimated from such a measurement on a similar material. The total resistivity is then calculated from the above equation.

The *Residual Resistance Ratio* (RRR =  $R_{\rm RT}/R_{\rm 4K} = \rho_{295\rm K}/\rho_{\rm 4K}$ ) is often used as an indicator of sample purity for pure metals [that is, the residual resistivity  $\rho_{\rm res} \approx \rho_{\rm 4K} = \rho_{\rm i} _{295\rm K}/(\rm RRR - 1)$ ]. The higher the value of RRR, the lower  $\rho_{\rm res}$ , and the more defect-free the metal. (Appendix A3.1 lists RRR values for common conductor materials, which can be used to estimate  $\rho_{\rm res}$ ; an example is given in Sec. 6.3.4.)

Values of the ideal resistivity  $\rho_i(T)$  tabulated below were determined experimentally by assuming the validity of Matthiessen's rule and subtracting the measured value of  $\rho_{res}$  from precise measurements of the total  $\rho(T)$  measured for very pure metals.

For convenience, the *total* resistivities of two oxygen-free copper (OFHC) samples are also listed, one with RRR  $\cong$  100, and the other 60% cold-drawn. Unlike the rest of the data, entries for these two material listings are not *ideal* resistivities and apply only to copper samples of comparable RRR or cold work.

Resistivity data at room temperature for additional elements are given in Appendix A6.1.

| 2   · L                              |        | •                | -              |                  |                   |                   |                    |                    |                    |
|--------------------------------------|--------|------------------|----------------|------------------|-------------------|-------------------|--------------------|--------------------|--------------------|
| Pure Metal                           | 10 K   | 20 K             | 50 K           | 77 K             | 100K              | 150 K             | 200 K              | 250 K              | 295 K              |
| $[RRR \equiv \rho_{RT} / \rho_{4K}]$ |        |                  |                |                  |                   |                   |                    |                    |                    |
| Ag (RRR=1800) <sup>a</sup>           | 0.0001 | 0.003            | 0.103          | 0.27             | 0.42              | 0.72              | 1.03               | 1.39               | 1.60               |
| Al (RRR=3500) <sup>a</sup>           |        | 0.0007           | 0.047          | 0.22             | 0.44              | 1.01              | 1.59               | 2.28               | 2.68               |
| Au (RRR=300) <sup>b</sup>            | 0.0006 | 0.012            | 0.20           | 0.42             | 0.62              | 1.03              | 1.44               | 1.92               | 2.20               |
| Cu (RRR=3400) <sup>k</sup>           |        | 0.0010           | 0.049          | 0.19             | 0.34              | 0.70              | 1.05               | 1.38               | 1.69               |
| Cu(OFHC) (RRR≅100) <sup>i</sup>      |        |                  |                |                  |                   |                   |                    |                    |                    |
| (total p)                            | 0.015  | 0.017            | 0.084          | 0.21             | 0.34              | 0.70              | 1.07               | 1.41               | 1.70               |
| Cu (OFHC) (60 % cold                 |        |                  |                |                  |                   |                   |                    |                    |                    |
| drawn) <sup>i</sup> (total $\rho$ )  | 0.030  | 0.032            | 0.10           | 0.23             | 0.37              | 0.72              | 1.09               | 1.43               | 1.73               |
| Fe (RRR=100) <sup>c</sup>            | 0.0015 | 0.007            | 0.135          | 0.57             | 1.24              | 3.14              | 5.3                | 7.55               | 9.8                |
| In (RRR=5000) <sup>d</sup>           | 0.018  | 0.16             | 0.92           | 1.67             | 2.33              | 3.80              | 5.40               | 7.13               | 8.83               |
| Nb (RRR=213) <sup>e</sup>            |        | 0.062            | 0.89           | 2.37             | 3.82              | 6.82              | 9.55               | 12.12              | 14.33              |
| Ni (RRR=310) <sup>c</sup>            |        | 0.009            | 0.15           | 0.50             | 1.00              | 2.25              | 3.72               | 5.40               | 7.04               |
| Pb (RRR=14000, <sup>f</sup>          |        |                  |                |                  |                   |                   |                    |                    |                    |
| $RRR=10^5)^{g}$                      |        | $0.53^{\rm \ f}$ | $2.85^{\rm f}$ | $4.78^{\rm \ f}$ | 6.35 <sup>g</sup> | 9.95 <sup>g</sup> | 13.64 <sup>g</sup> | 17.43 <sup>g</sup> | 20.95 <sup>g</sup> |
| Pt (RRR=600) °                       | 0.0029 | 0.036            | 0.72           | 1.78             | 2.742             | 4.78              | 6.76               | 8.70               | 10.42              |
| Ta (RRR=77) <sup>c</sup>             | 0.0032 | 0.051            | 0.95           | 2.34             | 3.55              | 6.13              | 8.6                | 11.0               | 13.1               |
| Ti (RRR=20) <sup>h</sup>             |        | 0.020            | 1.4            | 4.45             | 7.9               | 16.7              | 25.7               | 34.8               | 43.1               |
| W (RRR=100) <sup>j</sup>             | 0.0002 | 0.0041           | 0.150          | 0.56             | 1.03              | 2.11              | 3.20               | 4.33               | 5.36               |

Ideal Resistivity  $\rho_i \left[ \Omega \cdot \mathbf{m} \times 10^{-8} \equiv \mu \Omega \cdot \mathbf{cm} \right]$ 

<sup>a</sup> R. S. Seth and S. B. Woods (1970), *Phys. Rev.* **B2**, 2961; J. Bass, ed. (1982), *Landolt–Börnstein*, Vol. III/15a, *Metals: Electronic Transport Phenomena*, Springer-Verlag, Berlin.

<sup>b</sup> D. Damon, M. P. Mathur, and P. G. Klemens (1968), *Phys. Rev.* **176**, 876; J. Bass, ed. (1982), *Landolt–Börnstein*, Vol. III/15a *Metals: Electronic Transport Phenomena*, Springer-Verlag, Berlin.

- <sup>c</sup> G. K. White and S. B. Woods (1959), *Philos. Trans. Roy. Soc.* A251, 273; J. Bass, ed. (1982), *Landolt–Börnstein*, Vol. III/15a, *Metals: Electronic Transport Phenomena*, Springer-Verlag, Berlin.
- <sup>d</sup> G. K. White and S. B. Woods (1957), *Rev. Sci. Instrum.* **28**, 638; J. Bass, ed. (1982), *Landolt–Börnstein*, Vol. III/15a, *Metals: Electronic Transport Phenomena*, Springer-Verlag, Berlin.
- <sup>e</sup> J. M. Abraham, C. Tete, and B. Deviot (1974), *J. Less-comm. Met.* **37**, 181; J. Bass, ed. (1982), *Landolt–Börnstein*, Vol. III/15a, *Metals: Electronic Transport Phenomena*, Springer-Verlag, Berlin.
- <sup>f</sup> B. N. Aleksandrov and I. G. D'Yakov (1963), Sov. Phys. JETP (English Transl.) **16**, 603–608; Zh. Eksp. Teor. Fiz. (1962) **43**, 399; J. Bass, ed. (1982), Landolt–Börnstein, Vol. III/15a, Metals: Electronic Transport Phenomena, Springer-Verlag, Berlin.
- <sup>g</sup> J. P. Moore and R. S. Graves (1973), J. Appl. Phys. 44, 1174; J. Bass, ed. (1982), Landolt–Börnstein, Vol. III/15a, Metals: Electronic Transport Phenomena, Springer-Verlag, Berlin.
- <sup>h</sup> R. J. Wasilewski (1962), *Trans. Met. Soc. AIME* **224**, 13; J. Bass, ed. (1982), *Landolt–Börnstein*, Vol. III/15a, *Metals: Electronic Transport Phenomena*, Springer-Verlag, Berlin.

- <sup>j</sup> J. G. Hust (1976), *High Temp.- High Press.* **8**, 377–390. <sup>k</sup> J. S. Dugdale (1965), unpublished data, Univ. of Leeds, Leeds, UK.

# *A6.5b* Total electrical resistivity vs. temperature for technical alloys and common solders<sup>*a*</sup> (Sec 6.3)

For *alloys*, values of the *total* resistivity  $\rho(T)$  are tabulated [i.e.,  $\rho(T) = \rho_{res} + \rho_i(T)$ ], since there is little specimen-to-specimen variation in the residual resistivity contribution from defects. Resistivities of solid alloys at room temperature are tabulated in Appendix A3.7.

| Alloy                          | 10 K | 20 K | 50 K | 77 K | 100K | 150 K | 200 K | 250 K | 295 K |
|--------------------------------|------|------|------|------|------|-------|-------|-------|-------|
|                                |      |      |      |      |      |       |       |       |       |
| Al 1100–0                      | 0.08 | 0.08 | 0.16 | 0.32 | 0.51 | 1.07  | 1.72  | 2.37  | 2.96  |
| Al 5083–0                      | 3.03 | 3.03 | 3.13 | 3.33 | 3.55 | 4.15  | 4.79  | 5.39  | 5.92  |
| Al 6061–T6                     | 1.38 | 1.39 | 1.48 | 1.67 | 1.88 | 2.46  | 3.09  | 3.68  | 4.19  |
| Hastelloy C                    | 123  | 123  | 123  | 124  | _    |       | 126   |       | 127   |
| Inconel 625                    | 124  | 124  | 125  | 125  | _    |       | 127   |       | 128   |
| Inconel 718                    | 108  | 108  | 108  | 109  | _    |       | 114   | 134   | 156   |
| Berylco 25<br>(Cu-2%Be-0.3%Co) | 6.92 | 6.92 | 7.04 | 7.25 | 7.46 | 7.96  | 8.48  | 8.98  | 9.43  |
| Phosphor Bronze A              | 8.58 | 8.58 | 8.69 | 8.89 | 9.07 | 9.48  | 9.89  | 10.3  | 10.7  |
| Cartridge Brass                |      |      |      |      |      |       |       |       |       |
| (70%Cu-30%Zn)                  | 4.22 | 4.22 | 4.39 | 4.66 | 4.90 | 5.42  | 5.93  | 6.42  | 6.87  |
| CuNi 30 (67Ni-30Cu)            |      |      |      |      |      |       |       |       |       |
| (Monel)                        | 36.4 | 36.5 | 36.6 | 36.7 | 36.9 | 37.4  | 37.9  | 38.3  | 38.5  |
| Ti-6%Al-4%V                    | _    | 147  | 148  | 150  | 152  | 157   | 162   | 166   | 169   |
| Stainless Steel (304L)         | 49.5 | 49.4 | 50.0 | 51.5 | 53.3 | 58.4  | 63.8  | 68.4  | 72.3  |
| Stainless Steel (310)          | 68.6 | 68.8 | 70.4 | 72.5 | 74.4 | 78.4  | 82.3  | 85.7  | 88.8  |
| Stainless Steel (316)          | 53.9 | 53.9 | 54.9 | 56.8 | 58.8 | 63.8  | 68.9  | 73.3  | 77.1  |
| Invar (Fe-36%Ni)               | 50.3 | 50.5 | 52.1 | 54.5 | 57.0 | 63.3  | 70.0  | 76.5  | 82.3  |
|                                |      |      |      |      |      |       |       |       |       |

Alloy total resistivity  $\rho \left[ \Omega \cdot \mathbf{m} \times 10^{-8} \equiv \mu \Omega \cdot \mathbf{cm} \right]$ 

<sup>a</sup> Values were interpolated with a cubic spline fit to data obtained by A. F. Clark, G. E. Childs, and G. H. Wallace (1970), *Cryogenics* **10**, 295–305.

### A6.6 Superconductor properties (Sec. 6.3.6)

Property values of these high-field superconductors are representative because there is some variation with sample composition, inhomogeneities, and impurity levels.

Additional data on critical-temperature values of superconducting *elements* are included in the general table of Appendix A6.1

| Superconductor                                                    | Crystal Structure * | Lattice            | Constar | nts [Å] †          | $T_{\rm c}$      | $\mu_0 H_{\rm c2}(0~{\rm K})$ | $\lambda_{GL}(0 \text{ K})$ <sup>‡</sup> | $\xi_{GL}(0 \text{ K})^{\zeta}$ |
|-------------------------------------------------------------------|---------------------|--------------------|---------|--------------------|------------------|-------------------------------|------------------------------------------|---------------------------------|
|                                                                   |                     | а                  | b       | С                  | [K]              | [T]                           | [nm]                                     | [nm]                            |
| Low T <sub>c</sub>                                                |                     |                    |         |                    |                  |                               |                                          |                                 |
| Nb–Ti <sup>e</sup>                                                | A2                  |                    |         |                    | 9.3 <sup>j</sup> | 13                            | 300                                      | 4                               |
| V <sub>3</sub> Ga <sup>e</sup>                                    | A15                 | 4.816 <sup>n</sup> | _       | _                  | 15               | 23                            | 90                                       | 2–3                             |
| V <sub>3</sub> Si <sup>e</sup>                                    | A15                 | 4.722 <sup>n</sup> | _       | _                  | 16               | 20                            | 60                                       | 3                               |
| Nb <sub>3</sub> Sn <sup>e</sup>                                   | A15                 | 5.289 <sup>n</sup> | _       | _                  | 18               | 23                            | 65                                       | 3                               |
| Nb <sub>3</sub> Al °                                              | A15                 | 5.187 <sup>n</sup> | _       | _                  | 18.9             | 32                            |                                          |                                 |
| Nb <sub>3</sub> Ga <sup>o</sup>                                   | A15                 | 5.171 <sup>n</sup> | —       | _                  | 20.3             | 34                            |                                          |                                 |
| Nb <sub>3</sub> (Al <sub>75</sub> Ge <sub>25</sub> ) <sup>b</sup> | A15                 |                    |         |                    | 20.5             | 41                            |                                          |                                 |
| Nb <sub>3</sub> Ge <sup>e</sup>                                   | A15                 | 5.166 <sup>n</sup> | _       | _                  | 23               | 38                            | 90                                       | 3                               |
| NbN <sup>e</sup>                                                  | B1                  |                    |         |                    | 16               | 15                            | 200                                      | 5                               |
| V <sub>2</sub> (Hf,Zr) °                                          | C15                 |                    |         |                    | 10.1             | 24                            |                                          |                                 |
| PbMo <sub>6</sub> S <sub>8</sub> <sup>e</sup>                     | Chevrel             |                    |         |                    | 15               | 60                            | 200                                      | 2                               |
| $MgB_2$                                                           | hexagonal           | 3.086 <sup>m</sup> | _       | 3.521 <sup>m</sup> | 39               | $\sim 16 (a,b)^{1}$           | 140 <sup>k</sup>                         | 5.2 <sup>k</sup>                |
|                                                                   |                     |                    |         |                    |                  | ~2.5 ( <i>c</i> )             |                                          |                                 |

| Superconductor                                                                  | Crystal Structure *          | * Lattice Constants [Å] <sup>†</sup> |       | T <sub>c</sub> | $\mu_0 H_{\rm c2}(0~{\rm K})$ | $\lambda_{GL}(0 \text{ K})$ <sup>‡</sup> | $\xi_{GL}(0 \text{ K})^{\zeta}$ |                             |
|---------------------------------------------------------------------------------|------------------------------|--------------------------------------|-------|----------------|-------------------------------|------------------------------------------|---------------------------------|-----------------------------|
|                                                                                 |                              | а                                    | b     | С              | [K]                           | [T]                                      | [nm]                            | [nm]                        |
| High $T_c^{a}$                                                                  |                              |                                      |       |                |                               |                                          |                                 |                             |
| $La_{1.85}Sr_{0.15}CuO_{4-\delta}^{e}$                                          | I4/mmm                       | 3.779                                | 3.779 | 1.323          | 40                            | 50                                       | 80 ( <i>a</i> , <i>b</i> )      | ~4 ( <i>a</i> , <i>b</i> )  |
|                                                                                 |                              |                                      |       |                |                               |                                          | 400 (c)                         | 0.7 ( <i>c</i> )            |
| $YBa_{2}Cu_{3}O_{7-\delta}\ ^{d}$                                               | Pmmm                         | 3.818                                | 3.884 | 11.683         | 90                            | 670 ( <i>a</i> , <i>b</i> )              | 150 <i>(a,b)</i>                | $\sim 2 (a,b)$              |
| (YBCO)                                                                          |                              |                                      |       |                |                               | 120 (c)                                  | 900 (c)                         | 0.4 ( <i>c</i> )            |
| $Bi_2Sr_2CaCu_2O_{8-\delta}{}^d$                                                | A2aa                         | 5.410                                | 5.420 | 30.930         | 90                            | 280 ( <i>a</i> , <i>b</i> )              | 300 ( <i>a</i> , <i>b</i> )     | ~3 ( <i>a</i> , <i>b</i> )  |
| (Bi-2212)                                                                       |                              |                                      |       |                |                               | 32 (c)                                   |                                 | 0.4 ( <i>c</i> )            |
| $(Bi,Pb)_2Sr_2Ca_2Cu_3O_{10+\delta}$<br>(Bi-2223)                               | Perovskite<br>(orthorhombic) | 5.39                                 | 5.40  | 37             | 110                           |                                          |                                 |                             |
| $Tl_2Ba_2CaCu_2O_{8^{+\delta}}{}^{d,p}$                                         | I4/mmm                       | 3.856                                | 3.856 | 29.260         | 110                           |                                          | 215 ( <i>a</i> , <i>b</i> )     | 2.2 ( <i>a</i> , <i>b</i> ) |
| (Tl-2212)                                                                       |                              |                                      |       |                |                               |                                          |                                 | 0.5 ( <i>c</i> )            |
| $Tl_2Ba_2Ca_2Cu_3O_{10-\delta} \overset{d,p}{}$                                 | I4/mmm                       | 3.850                                | 3.850 | 35.88          | 125                           | 120                                      | 205 ( <i>a</i> , <i>b</i> )     | 1.3 ( <i>a</i> , <i>b</i> ) |
| (Tl-2223)                                                                       |                              |                                      |       |                |                               |                                          | 480 (c)                         |                             |
| HgBa <sub>2</sub> Ca <sub>2</sub> Cu <sub>3</sub> O <sub>8+δ</sub> <sup>a</sup> | Pmmm                         | 3.85                                 |       | 15.85          | 133                           | 160 <sup>q</sup>                         |                                 | $1.42(a,b)^{q}$             |

Notation:

\_

\* Crystal structures for the low-T<sub>c</sub> superconductors are listed here mostly by the Strukturbericht designation, whereas for the high-T<sub>c</sub> materials they are mostly listed by the Space group designation. Tables of cross lists to different nomenclatures are given in the appendixes to the ASM Handbook (1992), Vol. 3, Alloy Phase Diagrams, ASM International, Materials Park, Ohio.

<sup>†</sup> (*a*, *b*) refers to magnetic field, penetration depth, or coherence length being coplanar with the *a*,*b* crystallographic direction or Cu–O planes (usually parallel to the flat faces of practical conductors); (*c*) refers to an orientation along the *c*-axis; that is, perpendicular to the Cu–O planes (usually perpendicular to the flat faces of most practical conductors).

<sup>‡</sup> The penetration depth  $\lambda_{GL}(0 \text{ K})$  is the constant prefactor in the Ginzburg–Landau expression  $\lambda_{GL}(T) = \lambda_{GL}(0 \text{ K}) (1 - T/T_c)^{-0.5}$ .

<sup> $\zeta$ </sup> The coherence length  $\xi_{GL}(0 \text{ K})$  is the constant prefactor in the Ginzburg–Landau expression  $\xi_{GL}(T) = \xi_{GL}(0 \text{ K}) (1 - T/T_c)^{-0.5}$ .

References:

- <sup>a</sup> CRC Handbook of Chemistry and Physics (2002), 83<sup>rd</sup> edition., CRC Press, Boca Raton, Florida.
- <sup>b</sup> G. Bogner (1977), "Large scale applications of superconductivity," in *Superconductor Applications: SQUIDS and Machines*, eds. B. B. Schwartz and S. Foner, Plenum, New York.
- <sup>c</sup> B. W. Roberts (1978), Properties of Selected Superconducting Materials, NBS Technical Note 983, U.S. Government Printing Office, Washington, D.C..
- <sup>d</sup> T. Datta (1992), "Oxide superconductors: physical properties," pp. 414–423 in *Concise Encyclopedia of Magnetic & Superconducting Materials*, J. Evetts, ed., Pergamon Press.
- <sup>e</sup> R. J. Donnelly (1981), in *Physics Vade Mecum*, ed. H. L. Anderson, Am. Inst. of Physics; T. P. Orlando and K. A. Delin, (1991), *Foundations of Applied Superconductivity*, Addison-Wesley.
- <sup>j</sup> L. F. Goodrich and T. C. Stauffer (2003), unpublished data, National Institute of Standards and Technology, Boulder, Colorado.
- <sup>k</sup> D. K. Finnemore, J. E. Ostenson, S. L. Bud'ko, G. Lapertot, and P. C. Canfield (2001), Phys. Rev. Lett. 86, 2420–2422.
- <sup>1</sup> P. C. Canfield and G. W. Crabtree (2003), *Physics Today* 56, 34–40.
- <sup>m</sup> T. Vogt, G. Schmneider, J. A. Hriljac, G. Yang, and J. S. Abell (2001), *Phys. Rev.* B 63, 220505/1-3.
- <sup>n</sup> M. Weger and I. B. Goldberg (1973), p. 3 in Solid State Physics, Vol. 28, eds. H. Ehrenreich, F. Seitz, and D. Turnbull, Academic Press, p. 3.
- <sup>o</sup> J. W. Ekin (1983), Chapter 13 in Materials at Low Temperatures, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio.
- <sup>p</sup> E. Bellingeri and R. Flükiger (2003), in *Handbook of Superconducting Materials*, Vol. 1, D. A. Cardwell and D. S. Ginley, eds., Inst. of Phys. Publishing, pp. 993–1027.
- <sup>q</sup> J. Schwartz and P.V.P.S.S. Sastry (2003), in *Handbook of Superconducting Materials*, Vol. 1, D. A. Cardwell and D. S. Ginley, eds., Inst. of Phys. Publishing, pp. 1029–1048.

# *A6.7 Thermal conductivity vs. temperature for selected metals, alloys, glasses, and polymers (Sec. 6.4).*

Additional thermal-conductivity data for various amorphous solids (vitreous silica, germania, selenium) and amorphous materials (polystyrene and PMMA) are shown in Fig. 6.14. Thermal conductivity integrals are tabulated for selected cryostat construction materials in Appendix A2.1. Properties of metals with very high thermal conductivities are given in Appendix A3.1.

| Material                                      | 4 K   | 10 K  | 20 K           | 40 K  | 77 K | 100 K | 150 K | 200 K | 295 K |
|-----------------------------------------------|-------|-------|----------------|-------|------|-------|-------|-------|-------|
| Metals & Alloys                               |       |       |                |       |      |       |       |       |       |
| Al 5083 <sup>a</sup>                          | 3.3   | 8.4   | 17             | 33    | 55   | 66    | 85    | 99    | 118   |
| Al 6061-T6 <sup>a</sup>                       | 5.3   | 14    | 28             | 52    | 84   | 98    | 120   | 136   | 155   |
| Beryllium–Copper <sup>g</sup>                 | 1.9   | 5.0   | 11             | 21    | 36   | 43    | 57    | 72    | 95    |
| Brass (UNS C36000)                            |       |       |                |       |      |       |       |       |       |
| (61.5wt%Cu-                                   | 2.0   | 5.7   | 12             | 19    | 29   | 40    | 47    | 64    | 86    |
| 35.4wt%Zn-3.1 <sup>st</sup> %Pb) <sup>b</sup> | ,     |       |                |       |      |       |       |       |       |
| Brass (68wt%Cu-                               | •     | 1.0   |                | • •   |      |       |       |       |       |
| 32wt%Zn) <sup>d</sup>                         | 3.0   | 10    | 22             | 38    | 53   |       |       |       |       |
| Copper OFHC                                   | (2)   | 1540  | <b>2</b> 4 2 0 | 1.450 |      | 4.61  | 410   | 407   | 207   |
| (RRR≈100) <sup>a</sup>                        | 630   | 1540  | 2430           | 1470  | 544  | 461   | 418   | 407   | 397   |
| Inconel 718 <sup>a</sup>                      | 0.46  | 1.5   | 3.0            | 4.7   | 6.4  | 7.1   | 8.1   | 8.7   | 9.7   |
| Invar <sup>b</sup>                            | 0.24  | 0.73  | 1.7            | 2.6   | 4.2  | 6.2   | 7.6   | 10    | 12    |
| Manganin (Cu-                                 | 0.44  | 1 4   | 2.2            | ( )   | 11   |       |       |       |       |
| 12wt%Mn-3wt%Ni) <sup>d</sup>                  | 0.44  | 1.4   | 3.2            | 0.8   | 11   |       |       |       |       |
| Soft-Solder                                   | 16    | 42    | 57             | 52    | 50   |       |       |       |       |
| $(Sn-40wt\%Pb)^{d}$                           | 16    | 43    | 56             | 55    | 53   |       |       |       |       |
| Stainless Steel 304,316 <sup>a</sup>          | 0.27  | 0.90  | 2.2            | 4.7   | 7.9  | 9.2   | 11    | 13    | 15    |
| Ti (6%Al-4%V) <sup>a</sup>                    | _     | _     | 0.84           | 1.9   | 3.5  | 3.8   | 4.6   | 5.8   | 7.4   |
| <u>Polymers</u>                               |       |       |                |       |      |       |       |       |       |
| G-10CR (Normal) <sup>a</sup>                  | 0.072 | 0.11  | 0.16           | 0.22  | 0.28 | 0.31  | 0.37  | 0.45  | 0.60  |
| G-10CR (Warp) <sup>a</sup>                    | 0.073 | 0.14  | 0.20           | 0.27  | 0.39 | 0.45  | 0.57  | 0.67  | 0.86  |
| HDPE <sup>c</sup>                             | 0.029 | 0.090 | _              |       | 0.41 | 0.45  | _     | _     | 0.40  |
| Kevlar 49 <sup>a</sup>                        | 0.030 | 0.12  | 0.29           | 0.59  | 1.0  | 1.2   | 1.5   | 1.7   | 2.0   |

*Thermal conductivity*  $[W/(m\cdot K)]$ 

| Material                                                                                     | 4 K   | 10 K  | 20 K  | 40 K  | 77 K | 100 K | 150 K | 200 K | 295 K |
|----------------------------------------------------------------------------------------------|-------|-------|-------|-------|------|-------|-------|-------|-------|
| PMMA (Plexiglas <sup>TM</sup> ) <sup>c</sup>                                                 | 0.033 | 0.060 |       |       |      | 0.16  | 0.17  | 0.18  | 0.20  |
| Polyamide (Nylon <sup>TM</sup> ) <sup>a</sup>                                                | 0.012 | 0.039 | 0.10  | 0.20  | 0.29 | 0.32  | 0.34  | 0.34  | 0.34  |
| Polyimide (Kapton <sup>TM</sup> ) <sup>a</sup>                                               | 0.011 | 0.024 | 0.048 | 0.083 | 0.13 | 0.14  | 0.16  | 0.18  | 0.19  |
| Polyethylene terepthalate<br>(Mylar <sup>TM</sup> ) <sup>b</sup>                             | 0.038 | 0.048 | 0.073 | 0.096 | 0.12 | _     |       |       |       |
| PVC <sup>c</sup>                                                                             | 0.027 | 0.040 |       |       |      | 0.13  | 0.13  | 0.13  | 0.14  |
| PTFE (Teflon <sup>TM</sup> ) <sup>a</sup>                                                    | 0.046 | 0.10  | 0.14  | 0.20  | 0.23 | 0.24  | 0.26  | 0.27  | 0.27  |
| Ceramics and Nonmetals                                                                       |       |       |       |       |      |       |       |       |       |
| Alumina $(Al_2 O_3, sintered)^d$                                                             | 0.49  | 5.6   | 24    | 80    | 157  | 136   | 93    | 50    |       |
| Macor <sup>TM e</sup>                                                                        | 0.075 | 0.25  | 0.60  |       |      |       |       |       |       |
| MgO (crystal) <sup>d</sup>                                                                   | 82    | 1130  | 2770  | 2160  | 507  | 294   | 135   | 91    | 61    |
| Pyrex <sup>TM</sup> glass <sup>d</sup>                                                       | 0.10  | 0.12  | 0.15  | 0.25  | 0.45 | 0.58  | 0.78  | 0.92  | 1.1   |
| Sapphire $(Al_2 O_3)$ ,<br>synthetic crystal) <sup>d, f</sup>                                | 230   | 2900  | 15700 | 12000 | 1100 | 450   | 150   | 82    | 47    |
| $\alpha$ -SiC (single crystal,<br>$\perp$ to <i>c</i> -axis) <sup>d</sup>                    | 27    | 420   | 2000  | 4700  | 4000 | 3000  | 1500  | 950   | 510   |
| SiO <sub>2</sub> crystal (avg. of $\parallel$ and<br>$\perp$ to <i>c</i> -axis) <sup>d</sup> | 185   | 1345  | 545   | 134   | 43   | 30    | 18    | 13    | 9     |

<sup>a</sup> Cryogenic Materials Properties Program CD, Release B-01 (June 2001), Cryogenic Information Center, 5445 Conestoga Ct., Ste. 2C, Boulder, CO 80301-2724, Ph. (303) 442-0425, Fax (303) 443-1821.

<sup>b</sup> R. Radebaugh. et al. (2003), <u>http://www.cryogenics.nist.gov/</u> and the references listed therein.

<sup>c</sup> G. Hartwig (1994), Polymer Properties at Room and Cryogenic Temperatures, Plenum Press, New York.

<sup>d</sup> Y. S. Touloukian and E. H. Buyco (1970), *Thermal Conductivity*, Vols. 1 and 2, Plenum Press, New York.

<sup>e</sup> W. N. Lawless (1975), Cryogenics, 15, 273-277.

<sup>f</sup> For sapphire, the direction of heat flow is 60 degrees to the hexagonal axis; values are thought to be accurate to within 10 % to 15 % at temperatures above 60 K, but highly sensitive to small physical and chemical variations below 60 K.

<sup>g</sup> D. E. Gray, ed. (1972), *Thermal Conductivity of Alloys*, Am. Inst. of Physics Handbook, McGraw Hill, Table 4g–9.

A6.8a Magnetic mass susceptibility from 1.6 K to 4.2 K of materials commonly used in cryostat construction (Sec. 6.5)

*Mass* susceptibility is useful for small samples or irregularly shaped parts where the mass of the sample is more easily determined than its volume. It is not difficult, however, to convert between the two with the relation

(mass susceptibility  $\chi/\rho$ ) = (volume susceptibility  $\chi$ ) / (density in kg/m<sup>3</sup>)

Mass susceptibility is defined as  $\chi/\rho \equiv \sigma/H$ , where  $\sigma$  is the magnetic moment per unit mass and *H* is the magnetic intensity.

The coefficients B and C tabulated below (fourth and fifth columns) are used to calculate mass susceptibility in the temperature range 1.6 K to 4.2 K through the Curie law

$$\chi/\rho \equiv \mathbf{B} + (\mathbf{C}/T).$$

Mass susceptibility  $\chi/\rho$  has been evaluated at 4.2 K in the third column.

Values are tabulated in SI units (mks). To convert to cgs units, divide the values in this table by  $4\pi \times 10^{-3}$  to get  $\chi/\rho$  in cm<sup>3</sup>/g; see Appendix A1.4.

### *Magnetic mass susceptibility* $\chi/\rho$

| Material                                             | Supplier               | $\chi/\rho$<br>at 4.2 K<br>[10 <sup>-8</sup><br>m <sup>3</sup> /kg] | B<br>at 1.6K to 4.2 K<br>[10 <sup>-8</sup> m <sup>3</sup> /kg] | C<br>at 1.6K to 4.2K<br>[10 <sup>-8</sup> m <sup>3</sup> K/kg] |
|------------------------------------------------------|------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Dielectric Structural Materials                      |                        |                                                                     |                                                                |                                                                |
| Alumina <sup>a</sup>                                 | Alcoa                  | 2.8                                                                 | $1.0 \pm 0.8$                                                  | $7.5 \pm 2$                                                    |
| Alscobond Y-725 <sup>TM</sup> and catalyst $^{c}$    | Alloy Supply Co.       | -9.4                                                                | $-3.3\pm0.1$                                                   | -25.5                                                          |
| Bakelite <sup>TM</sup> , type 950 <sup>c</sup>       | Thiokil Chemical Co.   | 0.3                                                                 | $0.7\pm0.16$                                                   | -1.8                                                           |
| Epibond 100A <sup>TM b</sup>                         | Furane Plastics, Inc.  | -0.5                                                                | $-0.5 \pm 0.1$                                                 | $0.1 \pm 0.2$                                                  |
| Epibond 104 <sup>TM a</sup>                          | ٠٠                     | 60                                                                  | $30 \pm 3$                                                     | $160 \pm 10$                                                   |
| Epibond 121 <sup>TM a</sup>                          | ۰۵                     | 0.4                                                                 | $0.1 \pm 1$                                                    | $1 \pm 3.1$                                                    |
| Glass                                                |                        |                                                                     |                                                                |                                                                |
| Plate 7740 <sup>a</sup>                              | Corning Glass Co.      | 14                                                                  | $3.8 \pm 1$                                                    | 44 ± 5                                                         |
| Test tubes, Pyrex <sup>TM</sup> <sup>a</sup>         | ۰۵                     | 7.3                                                                 | $2.5 \pm 1$                                                    | $20 \pm 4$                                                     |
| Tubing 7740 <sup> a</sup>                            | ۰۵                     | 5.6                                                                 | $2.0 \pm 1$                                                    | $15 \pm 4$                                                     |
| Lava, grade A <sup>c</sup>                           | American Lava Corp.    | -21.1                                                               | $-4.2\pm0.7$                                                   | -71                                                            |
| Nylon <sup>™</sup> 101, type 66 <sup>b</sup>         | Polypenco Ltd.         | -0.81                                                               | $-0.79\pm0.01$                                                 | $-0.08\pm0.03$                                                 |
| PTFE (Teflon <sup>TM</sup> ) <sup>b</sup>            | ۰۵                     | -0.40                                                               | $-0.41\pm0.01$                                                 | $0.06\pm0.01$                                                  |
| Resin 3135 w/catalyst 7111 °                         | Crest Products Co.     | 1.24                                                                | $1.44\pm0.2$                                                   | -0.86                                                          |
| Resin 3170 w/catalyst 7133 °                         | ۰۵                     | 0.53                                                                | $0.59\pm0.017$                                                 | -0.25                                                          |
| Resin 7343 w/catalyst 7139 °                         | ۰۵                     | 1.70                                                                | $2.24\pm0.18$                                                  | -2.24                                                          |
| Quartz <sup>a</sup>                                  |                        | 3                                                                   | 4 ± 1.9                                                        | $-4.4 \pm 4.4$                                                 |
| Silica                                               |                        |                                                                     |                                                                |                                                                |
| No washing <sup>a</sup>                              | Fisher Scientific Co.  | 1.2                                                                 | $1.8\pm0.5$                                                    | $-2.3 \pm 2.3$                                                 |
| Acid washing <sup>a</sup>                            |                        | -0.1                                                                | $-0.3\pm0.9$                                                   | 0.6 ± 1.9                                                      |
| Stycast 2850GT <sup>TM</sup> w/catalyst No. 9 $^{a}$ |                        | 27                                                                  | 19 ± 5                                                         | $33 \pm 9$                                                     |
| Tufnol <sup>TM</sup> , Carp brand <sup>b</sup>       | Tufnol Ltd.            | 0.5                                                                 | $-0.3\pm0.3$                                                   | $3.0\pm0.5$                                                    |
| <u>Fibrous Materials</u>                             |                        |                                                                     |                                                                |                                                                |
| Absorbent cotton <sup>a</sup>                        | New Aseptic Labs, Inc. | 570                                                                 | $380 \pm 40$                                                   | $800 \pm 100$                                                  |
| Felt <sup>a</sup>                                    | McMaster-Carr          | 60                                                                  | $42 \pm 16$                                                    | $75 \pm 50$                                                    |
| Pyrex Wool <sup>TM a</sup>                           | Corning Glass Co.      | 240                                                                 | $150\pm30$                                                     | $380 \pm 50$                                                   |
| Thread (white) <sup>a</sup>                          | Coates and Clark Co.   | -15.3                                                               | $-19 \pm 16$                                                   | $15 \pm 38$                                                    |
| <u>Fluids</u>                                        |                        |                                                                     |                                                                |                                                                |
| Apiezon "J" <sup>TM</sup> oil <sup>a</sup>           | James G. Biddle Co.    | -0.19                                                               | $-0.04\pm0.18$                                                 | $-0.6 \pm 4$                                                   |
| Material                                      | Supplier                 | $\frac{\chi/\rho}{\text{at } 4.2 \text{ K}}$ $[10^{-8} \text{ m}^{3}/\text{kg}]$ | B<br>at 1.6K to 4.2 K<br>[10 <sup>-8</sup> m <sup>3</sup> /kg] | C<br>at 1.6K to 4.2K<br>[10 <sup>-8</sup> m <sup>3</sup> K/kg] |
|-----------------------------------------------|--------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Apiezon "N" <sup>TM</sup> grease <sup>a</sup> | "                        | -0.5                                                                             | 0.1 ± 1.5                                                      | $-2.5 \pm 0.4$                                                 |
| Aquadag <sup>TM a</sup>                       | Colloids Corp.           | 15                                                                               | $15 \pm 2$                                                     | $0.1 \pm 5$                                                    |
| RTV-102 <sup>TM</sup> adhesive <sup>c</sup>   | General Electric         | 0.79                                                                             | $1.2 \pm 0.5$                                                  | -1.62                                                          |
| Silicone-oil 50 cs <sup>a</sup>               | Dow-Corning              | 1.7                                                                              | $1.6 \pm 1.6$                                                  | $0.1 \pm 4$                                                    |
| GE 7031 <sup>™</sup> Varnish-toluene          |                          |                                                                                  |                                                                |                                                                |
| (1:1 mixture) <sup>a</sup>                    | General Electric         | 0.4                                                                              | $3\pm 2$                                                       | $-9 \pm 4$                                                     |
| <u>Metals</u>                                 |                          |                                                                                  |                                                                |                                                                |
| Brass <sup>a</sup>                            | Central Steel & Wire Co. | -235                                                                             | $-226 \pm 25$                                                  | $-38 \pm 13$                                                   |
| Copper magnet wire                            |                          |                                                                                  |                                                                |                                                                |
| Formex insulated <sup>a</sup>                 | Anaconda Copper Co.      | 0.04                                                                             | $0.04 \pm 1.3$                                                 | $0.01\pm1.9$                                                   |
| Sodereze insulated <sup>a</sup>               | Phelps Dodge Inc.        | 0.1                                                                              | $0.6\ \pm 0.9$                                                 | $-2.0 \pm 2.1$                                                 |
| Evanohm                                       |                          |                                                                                  |                                                                |                                                                |
| Double silk covered <sup>a</sup>              | Wilbur B. Driver Co.     | 86.0                                                                             | $-3.8\pm7.5$                                                   | 377 ±38                                                        |
| Formex insulated <sup>a</sup>                 | "                        | 155                                                                              | $11 \pm 18$                                                    | $603 \pm 75$                                                   |
| Manganin, enamel insulated <sup>a</sup>       | Driver-Harris Inc.       | 147                                                                              | 151 ±13                                                        | $-16 \pm 4$                                                    |
| Phosphor bronze <sup>c</sup>                  | Central Steel & Wire Co. | 2.1                                                                              | $2.9\pm1.1$                                                    | -3.3                                                           |
| Beryllium copper Berylco 25 °                 | Meier Brass & Aluminum   | 254                                                                              | $254\pm1.9$                                                    | 0.0                                                            |
| Stainless steels                              |                          |                                                                                  |                                                                |                                                                |
| 303 <sup>a</sup>                              | Central Steel & Wire Co. | 148                                                                              | $144 \pm 19$                                                   | $13 \pm 13$                                                    |
| 304 <sup>a</sup>                              | "                        | 134                                                                              | $136 \pm 11$                                                   | $-7.2 \pm 6$                                                   |
| 316 <sup>a</sup>                              | "                        | 361                                                                              | $392\pm31$                                                     | $-130 \pm 25$                                                  |
| 321 <sup>a</sup>                              | "                        | 133                                                                              | $126 \pm 13$                                                   | $31 \pm 13$                                                    |
| 347 <sup>a</sup>                              | "                        | 215                                                                              | $250\pm120$                                                    | $-150\pm190$                                                   |
| Sheets and Tapes                              |                          |                                                                                  |                                                                |                                                                |
| Kapton <sup>™</sup> H film <sup>c</sup>       | Du Pont                  | 0.8                                                                              | $1.3 \pm 0.7$                                                  | -2.1                                                           |
| Mylar <sup>TM a</sup>                         | Du Pont                  | 63                                                                               | 63 ± 9                                                         | $1.9 \pm 8$                                                    |
| Paper                                         |                          |                                                                                  |                                                                |                                                                |
| White <sup>a</sup>                            | W. M. Morgan Putnam Co.  | 4                                                                                | $-0.3 \pm 3$                                                   | $18 \pm 9$                                                     |
| Black (photographic) <sup>a</sup>             | "                        | 3                                                                                | $1 \pm 4$                                                      | $6\pm 8$                                                       |
| Tapes                                         |                          |                                                                                  |                                                                |                                                                |
| Cellophane <sup>TM a</sup>                    | Minn. Mining & Mfg. Co.  | 0.7                                                                              | $0.1 \pm 2$                                                    | $2\pm 6$                                                       |
| Glass #27 <sup>a</sup>                        | "                        | 30                                                                               | $9\pm 2$                                                       | $88 \pm 10$                                                    |

| Material                                                   | Supplier                | $\frac{\chi/\rho}{at 4.2 \text{ K}}$ $[10^{-8} \text{ m}^{3}/\text{kg}]$ | B<br>at 1.6K to 4.2 K<br>[10 <sup>-8</sup> m <sup>3</sup> /kg] | C<br>at 1.6K to 4.2K<br>[10 <sup>-8</sup> m <sup>3</sup> K/kg] |
|------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Masking (Tuck Tape) <sup>a</sup>                           | Technical Tape Corp.    | 11                                                                       | $10 \pm 2$                                                     | 3 ± 5                                                          |
| <u>Special</u>                                             |                         |                                                                          |                                                                |                                                                |
| Cupro-Nickel (70–30) <sup>a</sup>                          | Superior Tube Co.       | 480                                                                      | $480\pm100$                                                    |                                                                |
| Eccosorb LS-22 <sup>™</sup> foam sheet <sup>c</sup>        | Emerson and Cuming Inc. | -0.6                                                                     | $1.2\pm0.9$                                                    | -7.7                                                           |
| Germanium resistor <sup>c</sup>                            | Cryocal Inc.            | 6330                                                                     | $6380\pm48$                                                    | -215                                                           |
| Inconel <sup>TM a</sup>                                    | Superior Tube Co.       | 2.6×10 <sup>5</sup>                                                      | $(3.3 \pm 0.25) \times 10^5$                                   | $(-2.9 \pm 0.25) \times 10^{5}$                                |
| SC-13 <sup>™</sup> flexible silver micropaint <sup>a</sup> | Microcircuits Co.       | 1.5×10 <sup>4</sup>                                                      | $(1.3 \pm 0.9) \times 10^4$                                    | $(0.87 \pm 0.09) \times 10^4$                                  |
| Rubber (Neoprene <sup>TM</sup> ) <sup>a</sup>              | Microdot Inc.           | 35                                                                       | $16 \pm 24$                                                    | $78 \pm 56$                                                    |
|                                                            |                         |                                                                          |                                                                |                                                                |

<sup>a</sup> G. L. Salinger and J. C. Wheatley (1961), Rev. Sci. Instrum. 32, 872-874.

<sup>b</sup> R. J. Commander and C. B. P. Finn (1970), J. Phys. E: Sci. Instrum. 3, 78–79.

<sup>e</sup> D. M. Ginsberg (1970), Rev. Sci. Instrum. 41, 1661–1662.

A6.8b Magnetic volume susceptibility at 295 K, 77 K, and 4.2 K of structural materials commonly used in cryostat construction (Sec. 6.5)

*Volume* susceptibility is useful for structural parts with well defined shapes (such as tubes, rods, sheets, and blocks) where the volume of the part is readily determined. (In contrast, mass susceptibility is utilized in situations where the mass is easier to determine, such as with small or irregularly shaped parts.) The two quantities are simply related by

(mass susceptibility  $\chi/\rho$ ) = (volume susceptibility  $\chi$ ) / (density in kg/m<sup>3</sup>)

Volume susceptibility is defined by  $\chi \equiv M/H$ , where *M* is the magnetic moment per unit volume and *H* is the magnetic intensity.

Values in the table below are tabulated in SI units (mks). To convert to cgs units, divide these values by  $4\pi$  (from Appendix A1.4).

| Material                              | Condition         | Density                             | χ (293 K)              | χ (77 Κ)               | χ (4.2 K)              |
|---------------------------------------|-------------------|-------------------------------------|------------------------|------------------------|------------------------|
|                                       |                   | $[10^{\circ} \text{ kg/m}^{\circ}]$ | [SI units]             | [SI units]             | [SI units]             |
|                                       |                   |                                     |                        |                        |                        |
| <u>Aluminum alloys</u>                |                   |                                     |                        |                        |                        |
| pure <sup>c</sup>                     |                   | 2.70                                | $2.07 \times 10^{-5}$  |                        | $2.52 \times 10^{-5}$  |
| 2014 °                                |                   | 2.79                                | $1.80 \times 10^{-5}$  |                        | $1.72 \times 10^{-5}$  |
|                                       |                   |                                     |                        |                        |                        |
| <u>Copper alloys</u>                  |                   |                                     |                        |                        |                        |
| 99.999% pure Cu <sup>b</sup>          | cold drawn, etch, |                                     | -9.34×10 <sup>-6</sup> | -9.18×10 <sup>-6</sup> | $-8.67 \times 10^{-6}$ |
|                                       | and annealed      |                                     |                        |                        |                        |
| 99.96+% pure Cu <sup>b</sup>          | as formed         |                                     | -7.32×10 <sup>-6</sup> | $-8.55 \times 10^{-6}$ | -9.32×10 <sup>-6</sup> |
| Oxygen-free Cu <sup>b</sup>           |                   |                                     | -9.14×10 <sup>-6</sup> | -9.32×10 <sup>-6</sup> | $-8.93 \times 10^{-6}$ |
| ETP copper <sup>c</sup>               |                   | 8.92                                | $3.22 \times 10^{-5}$  |                        | 2.53×10 <sup>-5</sup>  |
| Beryllium copper <sup>c</sup>         |                   | 8.33                                | $1.56 \times 10^{-3}$  |                        | $1.82 \times 10^{-3}$  |
| (Cu-2%Be)                             |                   |                                     |                        |                        |                        |
| Phosphor Bronze A <sup>c</sup>        |                   | 8.95                                | $-5.86 \times 10^{-6}$ |                        | $-5.56 \times 10^{-6}$ |
| (94.8Cu-5Sn-0.2P)                     |                   |                                     |                        |                        |                        |
| 90Cu–10Ni <sup>b</sup>                |                   |                                     | 1.69×10 <sup>-5</sup>  | $1.57 \times 10^{-5}$  | $2.21 \times 10^{-5}$  |
| Brass, plain (cartridge) <sup>c</sup> |                   | 8.52                                | $-3.48 \times 10^{-6}$ |                        | $-6.14 \times 10^{-5}$ |

*Magnetic volume susceptibility*  $\chi$ 

(70%Cu-30%7n)

| (/0%Cu-30%ZII)                  |                |                   |                           |                        |                          |
|---------------------------------|----------------|-------------------|---------------------------|------------------------|--------------------------|
| Brass, free-cutting             | c              | 8.52              | $1.12 \times 10^{-2}$     |                        | $-1.4 \times 10^{-2}$    |
| (61.5%Cu-35.4%Zn-               |                |                   |                           |                        |                          |
| 3.1%Pb)                         |                |                   |                           |                        |                          |
| Manganin <sup>j</sup>           |                |                   | $2.7 \times 10^{-3}$      |                        | $1.26 \times 10^{-2}$    |
| (83Cu-13Mn-4Ni)                 |                |                   |                           |                        |                          |
| Constantan <sup>J</sup>         |                |                   | 0.45                      |                        | 4.3                      |
| (Cu-45Ni)                       |                |                   |                           |                        |                          |
| <u>Titanium alloy</u> s:        |                |                   |                           |                        |                          |
| Ti                              |                | 4.51 <sup>f</sup> | $1.78 \times 10^{-4}$ e   |                        |                          |
| Ti-6%Al-4%V                     |                | 4.41 <sup>c</sup> | $1.80 \times 10^{-4}$ c   |                        | $-8.27 \times 10^{-6}$ c |
| <u>Stainless Steels:</u>        |                |                   |                           |                        |                          |
| 304                             |                | 7.86 <sup>g</sup> | $2.7 \times 10^{-3}$ h    | 5.5×10 <sup>-3 h</sup> |                          |
| 304L                            | fully softened | 7.86 <sup>g</sup> | 2.6×10 <sup>-3 h</sup>    | 4.9×10 <sup>-3 h</sup> |                          |
| 304N                            |                | 7.86 <sup>g</sup> | 2.6×10 <sup>-3 h</sup>    | 5.2×10 <sup>-3 h</sup> | $4.8 \times 10^{-3}$ d   |
| 309 <sup>a</sup>                | fully softened |                   | 2.1×10 <sup>-3</sup>      | 6.2×10 <sup>-3</sup>   | $2.4 \times 10^{-2}$     |
|                                 | sensitized     |                   | 2.6×10 <sup>-3</sup>      | 6.7×10 <sup>-3</sup>   | $2.1 \times 10^{-2}$     |
| 310 <sup>a</sup>                | fully softened | 7.85 <sup>g</sup> | $2.2 \times 10^{-3}$      | 8.3×10 <sup>-3</sup>   | F                        |
|                                 | sensitized     |                   | 2.3×10 <sup>-3</sup>      | $1.2 \times 10^{-2}$   | F                        |
| 3108                            |                | 7.85 <sup>g</sup> | 2.6×10 <sup>-3 h</sup>    | 9.5×10 <sup>-3 h</sup> |                          |
| 316                             |                | 7.97 <sup>g</sup> | 3.0×10 <sup>-3 c, h</sup> | 7.7×10 <sup>-3 h</sup> | $1.6 \times 10^{-2}$ d   |
| 316L                            |                | 7.97 <sup>g</sup> | $3.0 \times 10^{-3}$ h    | $8.0 \times 10^{-3}$ h |                          |
| 316LN <sup>a</sup>              | fully softened | 7.97 <sup>g</sup> | 2.6×10 <sup>-3</sup>      | 6.9×10 <sup>-3</sup>   | $1.1 \times 10^{-2}$     |
|                                 | sensitized     |                   | 3.5×10 <sup>-3</sup>      | $7.2 \times 10^{-3}$   | $1.1 \times 10^{-2}$     |
| Nickel allovs: <sup>i</sup>     |                |                   |                           | Maximum aug            | antibility               |
| <u> </u>                        |                |                   |                           | <u>maximum susc</u>    | value:                   |
| Inconel 718-1153                |                |                   |                           | at.<br>10 K            | 13                       |
| Inconel 718-1094                |                |                   |                           | 16 K                   | 32                       |
| Inconel 718-1                   |                |                   |                           | 15 K                   | 3.8                      |
| Inconel 625                     |                |                   |                           | < 5 K                  | 0.0032                   |
| Nichrome (Ni–20Cr) <sup>j</sup> |                |                   | 5.2×10 <sup>-4</sup>      | -                      | 5.75×10 <sup>-3</sup>    |
|                                 |                |                   |                           |                        |                          |

Polymers:

From Experimental Techniques for Low Temperature Measurements by Jack W. Ekin, Oxford Univ. Press 2006, 2007, 2011

- 148 -

| Acrylic <sup>c</sup>     | 1.05 | $-6.98 \times 10^{-6}$ | $-2.65 \times 10^{-6}$ |
|--------------------------|------|------------------------|------------------------|
| Nylon <sup>c</sup>       | 1.15 | $-9.04 \times 10^{-6}$ | $-7.46 \times 10^{-6}$ |
| Composites. <sup>c</sup> |      |                        |                        |
| G10CR                    | 1.83 | 2.63×10 <sup>-6</sup>  | 5.34×10 <sup>-4</sup>  |
| G11CR                    | 1.90 | $2.59 \times 10^{-6}$  | 4.58×10 <sup>-4</sup>  |
| Linen Phenolic           | 1.35 | $-4.26 \times 10^{-6}$ | 2.93×10 <sup>-6</sup>  |
| <u>Miscellaneous</u> : ° |      |                        |                        |
| Hardwood                 | 0.63 | $6.09 \times 10^{-6}$  | $1.22 \times 10^{-5}$  |
| Quartz                   | 2.21 | $-1.03 \times 10^{-5}$ | $-9.27 \times 10^{-6}$ |
|                          |      |                        |                        |

 $F \equiv$  Ferromagnetic at this temperature.

<sup>a</sup> D. C. Larbalestier and H. W. King (1973), Cryogenics 13, 160-168.

<sup>b</sup> Handbook on Materials for Superconducting Machinery (1977), MCIC-HB-04,. Battelle, Columbus, Ohio.

<sup>c</sup> F. R. Fickett (1992), Adv. Cryog. Eng. (Mater.) 38, 1191–1197.

<sup>d</sup> E. W. Collings and R. L. Cappelletti (1985), Cryogenics 25, 713–718.

 <sup>e</sup> Landolt–Börnstein (1986), New Series, II/16, Diamagnetic Susceptibility, Springer-Verlag, Heidelberg; Landolt– Börnstein (1986–1992), New Series, III/19, Subvolumes a to i2, Magnetic Properties of Metals, Springer-Verlag, Heidelberg; CRC Handbook of Chemistry and Physics (2000), 81<sup>st</sup> edition, CRC Press, Boca Raton, Florida.

<sup>f</sup> Metals Handbook (1961), Vol. 1, Properties and Selection of Materials, 8<sup>th</sup> edition., ASM International, Materials Park, Ohio.

<sup>g</sup> H. I. McHenry (1983), Chapter 11 in *Materials at Low Temperatures*, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio

<sup>h</sup> E. W. Collings and S. C. Hart (1979), *Cryogenics* **19**, 521–530. (The coefficients given in Table 6 of this reference should be multiplied by  $4\pi$  to correctly give mass susceptibility in units of m<sup>3</sup>/kg<sup>-1</sup>.)

<sup>i</sup> I. R. Goldberg, M. R. Mitchell, A. R. Murphy, R. B. Goldfarb, and R. J. Loughran (1990), *Adv. Cryog. Eng.* (*Mater.*) **36**, 755–762.

<sup>j</sup> M. Abrecht, A. Adare, and J. W. Ekin (2007), *Rev. Sci. Inst.* 78, 046104.

# A6.8c Ferromagnetic traces at 4.2 K induced by welding and cyclic cooling of austenitic stainless steels $^{a}$ (Sec. 6.5)

Austenitic stainless steels are paramagnetic, but most become unstable below room temperature and partially transform into a martensitic phase, which is ferromagnetic. The transformation depends critically on the exact chemical composition and heat treatment of the alloy, as evidenced by the difference in data below for various samples of the same type of steel, indicated by (a), (b), and (c). Welding can also induce ferromagnetic behavior. Only 316LN and X6CrNi 1811 show no ferromagnetic traces on cooling or welding.

| Stainless Steel | F                | erromagnetic Tra | ices              |
|-----------------|------------------|------------------|-------------------|
| Alloy           | on first cooling | on welding       | on cyclic cooling |
| 303             | +                | +                | not tested        |
| 304 (a)         | +                | +                | not tested        |
| 304 (b)         | _                | +                | not tested        |
| 304 (c)         | +                | +                | not tested        |
| 304N            | +                | _                | +                 |
| 310             | +                | +                | +                 |
| 310S            | +                | +                | _                 |
| 316 (a)         | _                | +                | _                 |
| 316 (b)         | _                | _                | _                 |
| 316 (c)         | _                | _                | _                 |
| 316L            | +                | +                | _                 |
| 316LN           | _                | _                | _                 |
| 316Ti           | +                | +                | _                 |
| X6CrNi 1811     | _                | _                | _                 |
| 321 (a)         | +                | +                | _                 |
| 321 (b)         | +                | +                | +                 |

 $+ \equiv detected$ 

 $- \equiv \text{not detected}$ 

<sup>a</sup> Data from K. Pieterman, A. Ketting, and J. C. Geerse (1984), J. Phys., 45, C1-625-C1-631.

A6.9 Composition of austenitic stainless steels, nickel steels, and aluminum alloys (Sec. 6.6)

## Compositions of austenitic stainless steels<sup>a</sup>

These are Fe–Cr alloys with sufficient Ni and Mn to stabilize the f.c.c. austenitic phase so they retain their strength, ductility, and toughness at cryogenic temperatures.

Temperature-dependent mechanical and physical properties of AISI<sup>b</sup> 304, 310, and 316 are tabulated in Appendix A6.10.

| AISI <sup>b</sup><br>Type No. | Cr    | Ni      | Mn      | C, max | Ν         | Other                                      |
|-------------------------------|-------|---------|---------|--------|-----------|--------------------------------------------|
| 201                           | 16–18 | 3.5-5.5 | 5.5-7.5 | 0.15   | 0.25, max | 1.00 Si max<br>10.060 P max                |
| 202                           | 17–19 | 4–6     | 7.5–10  | 0.15   | 0.25, max | 0.030 S max<br>1.00 Si max<br>10.060 P max |
| 301                           | 16–18 | 6-8     |         | 0.15   |           | 0.030 S max                                |
| 302                           | 17–19 | 8–10    |         | 0.15   |           |                                            |
| 304                           | 18–20 | 8-12    |         | 0.08   |           |                                            |
| 304 L                         | 18–20 | 8-12    |         | 0.03   |           |                                            |
| 304 N                         | 18–20 | 8–10.5  | 2.0 max | 0.08   | 0.10-0.16 | 1.00 Si max<br>10.060 P max                |
| 304 LN                        | 18–20 | 8–12    | 2.0 max | 0.03   | 0.10-0.16 | 0.030 S max<br>1.00 Si max<br>10.060 P max |
| 305                           | 17–19 | 10.5–13 |         | 0.12   |           | 0.030 S max                                |
| 309                           | 22–24 | 12–15   |         | 0.20   |           |                                            |
| 310                           | 24–26 | 19–22   |         | 0.25   |           | 1.5 Si max.                                |
| 310 S                         | 24–26 | 19–22   |         | 0.08   |           | 1.5 Si max.                                |

Composition [weight percent]

| AISI <sup>b</sup><br>Type No. | Cr        | Ni        | Mn        | C, max | Ν         | Other                                                                                  |
|-------------------------------|-----------|-----------|-----------|--------|-----------|----------------------------------------------------------------------------------------|
| 316                           | 16–18     | 10-14     |           | 0.08   |           | 2–3 Mo                                                                                 |
| 316 L                         | 16–18     | 10–14     |           | 0.03   |           | 2–3 Mo                                                                                 |
| 316 N                         | 16–18     | 10-14     | 2.0 max   | 0.08   | 0.10-0.16 | 1.00 Si max<br>10.060 P max                                                            |
| 316 LN                        | 16–18     | 10-14     | 2.0 max   | 0.03   | 0.10-0.16 | 0.030 S max<br>1.00 Si max<br>10.060 P max                                             |
| 321                           | 17–19     | 9–12      |           | 0.08   |           | 0.030 S max<br>(5 × %C)<br>Ti, min.                                                    |
| 347                           | 17–19     | 9–13      |           | 0.08   |           | (10 × %C)<br>Nb+Ta, min.                                                               |
| ASTM <sup>c</sup> XM-10       | 19–21.5   | 5.5-7.5   | 8–10      | 0.08   | 0.15-0.40 | 1.00 Si max<br>10.060 P max                                                            |
| ASTM XM-11                    | 19–21.5   | 5.5-7.5   | 8–10      | 0.04   | 0.15-0.40 | 0.030 S max<br>1.00 Si max<br>10.060 P max                                             |
| ASTM XM-14                    | 17–19     | 5–6       | 14–16     | 0.12   | 0.35-0.50 | 0.030 S max<br>1.00 Si max<br>10.060 P max                                             |
| ASTM XM-19                    | 20.5-23.5 | 11.5–13.5 | 4–6       | 0.06   | 0.20-0.40 | 0.030 S max<br>0.10–0.30 Nb,<br>1.00 Si max                                            |
| ASTM XM-29                    | 17–19     | 2.25-3.75 | 11.5–14.5 | 0.08   | 0.20-0.40 | 0.030 S max<br>0.10–0.30 V<br>1.5–3.0 Mo<br>1.00 Si max<br>10.060 P max<br>0.030 S max |

<sup>a</sup> From H. I. McHenry (1983), Chapter 11 in *Materials at Low Temperatures*, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio.

<sup>b</sup> AISI: American Iron and Steel Institute, a designation system for steels.

<sup>c</sup> ASTM: Formerly known as the American Society for Testing and Materials, now ASTM International, an organization that provides a global forum for consensus standards for materials, products, systems, and services.

# Composition of nickel steels<sup>a</sup>

These Fe–Ni alloys have a predominantly b.c.c. crystal structure that undergoes a ductileto-brittle transition as temperature is reduced; the transition temperature decreases with increasing nickel content.

Temperature-dependent mechanical and physical properties of 3.5 Ni, 5 Ni, and 9 Ni alloys are tabulated in Appendix A6.10.

| ASTM <sup>b</sup><br>Specifi-<br>cation | Alloy  | Minimum<br>Service<br>Temp.[K] | C<br>max | Mn        | P<br>max | S<br>max | Si        | Ni        | Мо        | Cr        |
|-----------------------------------------|--------|--------------------------------|----------|-----------|----------|----------|-----------|-----------|-----------|-----------|
| A203<br>Grade D                         | 3.5 Ni | 173                            | 0.17     | 0.7 max   | 0.035    | 0.040    | 0.15-0.30 | 3.25-3.75 |           |           |
| A203<br>Grade E                         | 3.5 Ni | 173                            | 0.20     | 0.7 max   | 0.035    | 0.040    | 0.15-0.30 | 3.25-3.75 |           |           |
| A645                                    | 5 Ni   | 102                            | 0.13     | 0.30-0.60 | 0.025    | 0.025    | 0.20-0.35 | 4.75-5.25 | 0.20-0.35 |           |
| A645                                    | 5.5 Ni | 77                             | 0.13     | 0.90–1.50 | 0.030    | 0.030    | 0.15-0.30 | 5.0-6.0   | 0.10-0.30 | 0.10-1.00 |
| A553<br>Type II                         | 8 Ni   | 102                            | 0.13     | 0.90 max  | 0.035    | 0.040    | 0.15-0.30 | 7.5–8.5   |           |           |
| А553<br>Туре I                          | 9 Ni   | 77                             | 0.13     | 0.90 max  | 0.035    | 0.040    | 0.15-0.30 | 8.5–9.5   |           |           |

Composition [weight percent]

<sup>a</sup> From H. I. McHenry (1983), Chapter 11 in *Materials at Low Temperatures*, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio.

<sup>b</sup> ASTM: Formerly known as the American Society for Testing and Materials, now ASTM International, an organization that provides a global forum for consensus standards for materials, products, systems, and services.

# Composition of aluminum alloys<sup>a</sup>

Aluminum alloys have an f.c.c. crystal structure and thus retain their strength, ductility, and toughness at cryogenic temperatures. Temperature-dependent mechanical and physical properties of type 1100, 2219, 5083, and 6061 alloys are tabulated in Appendix A6.10.

| Tune  | Si              | Εe   | Cu        | Mn        | Μα          | Cr        | Zn      | ті        | Other        |
|-------|-----------------|------|-----------|-----------|-------------|-----------|---------|-----------|--------------|
| i ypc | max             | max  | Cu        | IVIII     | Wig         | CI        | max     | 11        | elements     |
|       | Ших             | Щах  |           |           |             |           | пил     |           | ciements     |
| 1100  | 1.0 Si<br>(+Fe) |      | 0.05-0.20 | 0.05 max  | —           |           | 0.10    | _         | 99.00 Al min |
| 2219  | 0.2             | 0.3  | 5.8-6.8   | 0.20-0.40 | 0.02<br>max | _         | 0.10    | 0.02-0.10 | 0.05–15 V    |
| 3003  | 0.6             | 0.7  | 0.05-0.20 | 1.0-1.5   | —           | —         | 0.10    | —         | 0.10–0.25 Zr |
| 5083  | 0.4             | 0.4  | 0.1 max   | 0.40-1.0  | 4.0-4.9     | 0.05-0.25 | 0.25    | 0.15 max  |              |
| 6061  | 0.4–0.8         | 0.7  | 0.15-0.40 | 0.15 max  | 0.8–1.2     | 0.04-0.35 | 0.25    | 0.15 max  |              |
| 7005  | 0.35            | 0.40 | 0.10      | 0.2–0.7   | 1.0–1.8     | 0.06-0.20 | 4.0-5.0 | 0.01-0.06 | 0.08–0.20 Zr |

Composition [weight percent]

<sup>a</sup> From H. I. McHenry (1983), Chapter 11 in *Materials at Low Temperatures*, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio.

## A6.10 Mechanical properties of structural materials used in cryogenic systems (Sec. 6.6)

The following four tables give the mechanical and physical properties of austenitic stainless steels, nickel steels, aluminum alloys, and other selected metal alloys and polymers.

### Mechanical and Physical Properties of Austenitic Stainless Steels

Compositions of these and other stainless-steel alloys are tabulated in Appendix A6.9; a plot of the temperature dependence of the yield strength of AISI 304 with various cold-work conditions is given Fig. 6.17.

| Alloy<br>Temperature  | Density <sup>ª</sup><br>[g·cm <sup>−3</sup> ] | Young's<br>Modulus <sup>a</sup><br>[GPa] | Shear<br>Modulus <sup>a</sup><br>[GPa] | Poisson's<br>Ratio <sup>a</sup> | Fracture<br>Tough-<br>ness <sup>b</sup><br>[MPa·m <sup>0.5</sup> ] | Thermal<br>Conduc-<br>tivity <sup>b</sup><br>[W/(m·K)] | Thermal<br>Expansion <sup>b</sup><br>(mean)<br>(K <sup>-1</sup> ×10 <sup>-6</sup> ) | Specific<br>Heat <sup>b</sup><br>[J/(kg·K)] | Electri-<br>cal<br>Resis-<br>tivity <sup>c</sup><br>[μΩ·cm] | Magnetic<br>Permea-<br>bility <sup>d</sup><br>(initial) | 0.2 %<br>Yield<br>Strength,<br>annealed <sup>e</sup><br>[MPa] |
|-----------------------|-----------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| AISI <sup>f</sup> 304 |                                               |                                          |                                        |                                 |                                                                    |                                                        |                                                                                     |                                             |                                                             |                                                         |                                                               |
| 295 K                 | 7.86                                          | 200                                      | 77.3                                   | 0.290                           |                                                                    | 14.7                                                   | 15.8                                                                                | 480                                         | 70.4                                                        | 1.02                                                    | 240                                                           |
| 77 K                  |                                               | 214                                      | 83.8                                   | 0.278                           |                                                                    | 7.9                                                    | 13.0                                                                                |                                             | 51.4                                                        |                                                         |                                                               |
| 4 K                   |                                               | 210                                      | 82.0                                   | 0.279                           |                                                                    | 0.28                                                   | 10.2                                                                                | 1.9                                         | 49.6                                                        | 1.09                                                    | —                                                             |
| AISI 310              |                                               |                                          |                                        |                                 |                                                                    |                                                        |                                                                                     |                                             |                                                             |                                                         |                                                               |
| 295 K                 | 7.85                                          | 191                                      | 73.0                                   | 0.305                           | 150                                                                | 11.5                                                   | 15.8                                                                                | 480                                         | 87.3                                                        | 1.003                                                   | 275                                                           |
| 77 K                  |                                               | 205                                      | 79.3                                   | 0.295                           | 220                                                                | 5.9                                                    | 13.0                                                                                | 180                                         | 72.4                                                        |                                                         |                                                               |
| 4 K                   |                                               | 207                                      | 79.9                                   | 0.292                           | 210                                                                | 0.24                                                   | 10.2                                                                                | 2.2                                         | 68.5                                                        | 1.10                                                    |                                                               |
| AISI 316              |                                               |                                          |                                        |                                 |                                                                    |                                                        |                                                                                     |                                             |                                                             |                                                         |                                                               |
| 295 K                 | 7.97                                          | 195                                      | 75.2                                   | 0.294                           | 350                                                                | 14.7                                                   | 15.8                                                                                | 480                                         | 75.0                                                        | 1.003                                                   | 240                                                           |
| 77 K                  |                                               | 209                                      | 81.6                                   | 0.283                           | 510                                                                | 7.9                                                    | 13.0                                                                                | 190                                         | 56.6                                                        | _                                                       | _                                                             |
| 4 K                   |                                               | 208                                      | 81.0                                   | 0.282                           | 430                                                                | 0.28                                                   | 10.2                                                                                | 1.9                                         | 53.9                                                        | 1.02                                                    |                                                               |

Major data source: Compilation by H. I. McHenry (1983), Chapter 11 in *Materials at Low Temperatures*, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio.

- <sup>a</sup> H. M. Ledbetter, W. F. Weston, and E. R. Naimon (1975), J. Appl. Phys. 46, 3855-3860.
- <sup>b</sup> D. B. Mann, ed. (1978), LNG Materials and Fluids, National Bureau of Standards, U.S. Government Printing Office, Washington, D. C.
- <sup>c</sup> A. R. Clark, G. E. Childs, and G. H. Wallace (1970), Cryogenics 10, 295–305.
- <sup>d</sup> K. R. Efferson and W. J. Leonard (1976), *Magnetic Properties of Some Structural Materials Used in Cryogenic Applications*, ORNL-4150, p. 126, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- <sup>e</sup> Metals Handbook, Vol. 1, Properties and Selection of Materials (1961), 8<sup>th</sup> edition, ASM International, Materials Park, Ohio.
- <sup>f</sup> AISI: American Iron and Steel Institute; a designation system for steel alloys.

#### Mechanical and Physical Properties of Nickel Steels

Compositions of these and other nickel-steel alloys are tabulated in Appendix A6.9; a plot of the temperature dependence of the yield strength of quenched and tempered 9% Ni steel is given in Fig. 6.17.

| Alloy<br>Tem | operature | Minimum<br>Service<br>Temp. <sup>°</sup><br>[K] | Density <sup>a</sup><br>[g·cm <sup>-3</sup> ] | Young's<br>Modulus <sup>a</sup><br>[GPa] | Shear<br>Modulus <sup>a</sup><br>[GPa] | Poisson's<br>Ratio <sup>a</sup> | Fracture<br>Tough-<br>ness <sup>b</sup><br>[MPa·m <sup>0.5</sup> ] | Thermal<br>Conduc-<br>tivity <sup>b</sup><br>[W/(m·K)] | Thermal<br>Expansion <sup>b</sup><br>(mean)<br>[K <sup>-1</sup> ×10 <sup>-6</sup> ] | Specific<br>Heat <sup>b</sup><br>[J/(kg·K)] |
|--------------|-----------|-------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|
| 3.5 Ni       |           | 173                                             |                                               |                                          |                                        |                                 |                                                                    |                                                        |                                                                                     |                                             |
|              | 295 K     |                                                 | 7.86                                          | 204                                      | 79.1                                   | 0.282                           | 190                                                                | 35                                                     | 11.9                                                                                | 450                                         |
|              | 172 K     |                                                 |                                               | 210                                      | 81.9                                   | 0.281                           | 210                                                                | 29                                                     | 10.2                                                                                | 350                                         |
| 5 Ni         |           | 102                                             |                                               |                                          |                                        |                                 |                                                                    |                                                        |                                                                                     |                                             |
|              | 295 K     |                                                 | 7.82                                          | 198                                      | 77.0                                   | 0.283                           | 210                                                                | 32                                                     | 11.9                                                                                | 450                                         |
|              | 111 K     |                                                 |                                               | 208                                      | 81.2                                   | 0.277                           | 200                                                                | 20                                                     | 9.4                                                                                 | 250                                         |
|              | 76 K      |                                                 |                                               | 209                                      | 81.6                                   | 0.277                           | 90                                                                 | 16                                                     | 8.8                                                                                 | 150                                         |
| 9 Ni         |           | 77                                              |                                               |                                          |                                        |                                 |                                                                    |                                                        |                                                                                     |                                             |
|              | 295 K     |                                                 | 7.84                                          | 195                                      | 73.8                                   | 0.286                           | 155                                                                | 28                                                     | 11.9                                                                                | 450                                         |
|              | 111 K     |                                                 |                                               | 204                                      | 77.5                                   | 0.281                           | 175                                                                | 18                                                     | 9.4                                                                                 | 250                                         |
|              | 76 K      |                                                 |                                               | 205                                      | 77.9                                   | 0.280                           | 170                                                                | 13                                                     | 8.8                                                                                 | 150                                         |

Major data source: Compilation by H. I. McHenry (1983), Chapter 11 in *Materials at Low Temperatures*, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio.

<sup>a</sup> W. F. Weston, E. R. Naimon, and H. M. Ledbetter (1975), pages 397–420 in *Properties of Materials for Liquefied Natural Gas Tankage*. ASTM STP 579, American Society for Testing and Materials, Philadelphia.

<sup>b</sup> D. B. Mann, ed. (1978), *LNG Materials and Fluids*, National Bureau of Standards, U.S. Government Printing Office, Washington, D.C.

<sup>c</sup> The minimum service temperature arises because of the ductile-to-brittle-phase transition that occurs at low temperatures in the nickel steels.

## Mechanical and Physical Properties of Aluminum Alloys

Compositions of these and other aluminum alloys are tabulated in Appendix A6.9; a plot of the temperature dependence of the yield strength of various aluminum alloys is given in Fig. 6.18.

| Alloy<br>Temperature                  | Density<br>[g·cm <sup>-3</sup> ] | Young's<br>Modulus<br>[GPa] | Shear<br>Modulus<br>[GPa] | Poisson's<br>Ratio | 0.2% Yield<br>Strength <sup>g</sup><br>[MPa] | Thermal<br>Conductiv-<br>ity<br>[W/(m·K)] | Thermal<br>Expansion<br>(mean)<br>$[K^{-1} \times 10^{-6}]$ | Specific<br>Heat<br>[J/(kg·K)] | Electrical<br>Resistivity<br>[μΩ·cm] |
|---------------------------------------|----------------------------------|-----------------------------|---------------------------|--------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------|--------------------------------------|
| 1100.0                                |                                  |                             |                           |                    |                                              |                                           |                                                             |                                |                                      |
| 205 K                                 | 2.75                             | (0                          |                           |                    | - 25                                         |                                           |                                                             |                                |                                      |
| 295 K                                 | 2.75                             | 69                          |                           |                    | < 35                                         |                                           |                                                             |                                |                                      |
| Precipitation-<br>hardened<br>2219-T6 |                                  |                             |                           |                    |                                              |                                           |                                                             |                                |                                      |
| 295 K                                 | 2.83                             | 77.4 <sup>d</sup>           | 29.1 <sup>d</sup>         | 0.330 <sup>d</sup> | 393                                          | 120 °                                     | $23^{\rm f}$                                                | $900^{\text{ f}}$              | 5.7 <sup>b</sup>                     |
| 77 K                                  |                                  | 85.1 <sup>d</sup>           | 32.3 <sup>d</sup>         | 0.319 <sup>d</sup> |                                              | 56 °                                      | 18.1 <sup>f</sup>                                           | $340^{\rm f}$                  |                                      |
| 4 K                                   |                                  | 85.7 <sup>d</sup>           | 32.5 <sup>d</sup>         | 0.318 <sup>d</sup> |                                              | 3 °                                       | 14.1 <sup>f</sup>                                           | $0.28^{\rm f}$                 | 2.9 <sup>b</sup>                     |
| Annealed 5083                         |                                  |                             |                           |                    |                                              |                                           |                                                             |                                |                                      |
| 295 K                                 | 2.66                             | 71.5 <sup>a</sup>           | 26.8 <sup>a</sup>         | 0.333 <sup>a</sup> | 145<br>(half hard: 228)                      | 120 <sup>b</sup>                          | 23 <sup>b</sup>                                             | 900 <sup>b</sup>               | 5.66 <sup>c</sup>                    |
| 77 K                                  |                                  | 80.2 <sup>a</sup>           | 30.4 <sup>a</sup>         | 0.320 <sup>a</sup> | (half hard, 226)                             | 55 <sup>b</sup>                           | 18.1 <sup>b</sup>                                           | 340 <sup>b</sup>               | 3.32 °                               |
| 4 K                                   |                                  | 80.9 <sup>a</sup>           | 30.7 <sup>a</sup>         | 0.318 <sup>a</sup> |                                              | 3.3 <sup>b</sup>                          | 14.1 <sup>b</sup>                                           | 0.28 <sup>b</sup>              | 3.03 <sup>c</sup>                    |
| Precipitation-<br>hardened            |                                  |                             |                           |                    |                                              |                                           |                                                             |                                |                                      |
| 295 K                                 | 2.700                            | 70.1 <sup>b</sup>           | 26.4 <sup>b</sup>         | 0.338 <sup>b</sup> | 275                                          |                                           | 23 <sup>b</sup>                                             | 900 <sup>c</sup>               | 3.94 °                               |
| 77 K                                  |                                  | 77.2 <sup>b</sup>           | 29.1 <sup>b</sup>         | 0.328 <sup>b</sup> |                                              |                                           | 18.1 <sup>b</sup>                                           | 340 °                          | 1.66 <sup>c</sup>                    |
| 4 K                                   |                                  | 77.7 <sup>b</sup>           | 29.2 <sup>b</sup>         | 0.327 <sup>b</sup> |                                              |                                           | 14.1 <sup>b</sup>                                           | 0.28 <sup>c</sup>              | 1.38 °                               |

Major data source: Compilation by H. I. McHenry (1983), Chapter 11 in *Materials at Low Temperatures*, eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio.

- <sup>a</sup> E. R. Naimon, H. M. Ledbetter, and W. F. Weston (1975), J. Mater. Sci. 10, 1309-1316.
- <sup>b</sup> D. B. Mann, ed. (1978), *LNG Materials and Fluids*, National Bureau of Standards, U.S. Government Printing Office, Washington, D.C.
- <sup>c</sup> A. R. Clark, G. E. Childs, and G. H. Wallace (1970), *Cryogenics* 10, 295–305.
- <sup>d</sup> R. P. Read and H. M. Ledbetter (1977), J. Engineering Materials and Technol. 99, 181–184.
- <sup>e</sup> G. E. Childs, L. J. Ericks, and R. L. Powell (1973), *Thermal Conductivity of Solids at Room Temperature and Below*, NBS Monograph 131, U.S. Government Printing Office, Washington, D.C.
- $^{\rm f}$  Assumed to be the same as that of 5083 and 6061.
- <sup>g</sup> Compiled by R. Radebaugh et al. (2001), <u>http://www.cryogenics.nist.gov/</u> and the references listed therein.

#### Mechanical Properties of Metal Alloys and Polymers

All data are at room temperature, unless noted otherwise by three consecutive values corresponding to 295K/76K/4K.

Mechanical property data for additional materials are available in the literature (Sec. 6.7.1) and on the Internet (Sec. 6.7.2).

| Material                                            | Density<br>[g·cm <sup>-3</sup> ] | Young's<br>Modulus<br>[GPa] | Yield Strength<br>[MPa] |
|-----------------------------------------------------|----------------------------------|-----------------------------|-------------------------|
|                                                     |                                  |                             |                         |
| <u>Metal Alloys</u>                                 |                                  |                             |                         |
| Beryllium S-200F <sup>a</sup>                       | 1.86                             | 290                         | 240                     |
| Copper, oxygen-free (annealed) <sup>a</sup>         | 8.95                             | 117                         | 70                      |
| Cu–2%Be (UNS C17200-TH 04) <sup>b, c</sup>          | 8.23                             | 119                         | 1030                    |
| Inconel 625 <sup> d</sup>                           | $8.44^{\text{ f}}$               | 195/207/207                 | 500/720/810             |
| Inconel 718 <sup> a</sup>                           | 8.20                             | 200                         | 1060                    |
| Hastelloy C-276 <sup>d,e</sup>                      | 8.9                              | 192/209/205                 | 480/700/810             |
| Ni (annealed) <sup>d</sup>                          | 8.9                              | 60/70/91                    | 60/70/80                |
| Ni–13at%Cr <sup>d</sup>                             | 8.7                              | 111/112/119                 | 120/160/190             |
| Ni-5at%W <sup>d</sup>                               | 10.4                             | 118/128/134                 | 180/260/280             |
| Titanium 3Al $-2.5$ V <sup>f</sup> (various shapes) | 4.5                              | 100                         | 830                     |
| Titanium 6Al–4V <sup>a</sup> (sheet form)           | 4.4                              | 114                         | 830                     |
| <u>Polymers</u> <sup>a</sup>                        |                                  |                             |                         |
| G-10 Fiberglass epoxy                               | 1.65                             | 28                          | _                       |
| Kapton <sup>™</sup> (film)                          | 1.43                             | 3.4                         | 210                     |
| Mylar <sup>TM</sup>                                 | 1.38                             | 3.8                         | 70                      |
| Nylon™                                              | 1.14                             | 3.4                         | _                       |
| Teflon <sup>TM</sup>                                | 2.2                              | 0.3                         | 14                      |

<sup>a</sup> R. Radebaugh et al. (2001), http://www.cryogenics.nist.gov/ and the references listed therein.

<sup>b</sup> Metals Handbook (1961), Vol. 1, Properties and Selection of Materials, 8<sup>th</sup> edition, ASM International, Materials Park, Ohio.

<sup>c</sup> N. J. Simon, E. S. Drexler, and R. P. Reed (1992), *Properties of Copper and Copper Alloys at Cryogenic Temperatures*, NIST Monograph 177. National Institute of Standards and Technology, U.S. Government Printing Office, Washington, D.C.

<sup>d</sup> C. C. Clickner, J. W. Ekin, N. Cheggour, C. L. H. Thieme, Y. Qiao, Y.-Y. Xie, and A. Goyal (2006), "Mechanical properties of pure Ni and Ni-alloy substrate materials for Y-Ba-Cu-O coated conductors," *Cryogenics*, to be published.

<sup>e</sup> Values averaged for three different batches of Hastelloy C-276

<sup>f</sup> www.matweb.com

#### A7. (i) Specialized resistivity measurement methods (ref. introduction to Part II)

#### A7.1 Sheet-resistance measurement of unpatterned films

When film properties are initially screened, it is convenient to measure the sheet resistance of the films without the need for patterning. This can be done by a four-probe contact method, wherein four equally spaced in-line probes (such as pogo pins) are pressed against the film near its middle, as illustrated by the insets in Fig. A7.1 for both circular- and rectangular-shaped samples. The usual four-terminal technique is used (described in detail in Sec. 7.2), wherein a small current *I* from a constant-current supply is passed through the outer two probes, and the voltage *V* is measured across the inner two probes. The *sheet resistance*  $R_s$  is given by

$$R_{\rm s} = (V/I) C \qquad [\Omega/{\rm sq}], \tag{A7.1}$$

in units of ohms per square, and *C* is a correction factor given by the curves in Fig. A7.1, valid for a thin film having a thickness *d* that is much less than the sides or diameter of the chip (*A* or *D* in the insets of Fig. A7.1). In the limit of small-probe spacing  $s \ll D$ ,  $C = \pi/\ln 2 = 4.53$ . The *bulk resistivity* of the film is related to the sheet resistance by

$$\rho = R_{\rm s} d \qquad [\Omega \cdot \rm cm]. \tag{A7.2}$$



FIG. A7.1 Correction factor C used in Eq. (A7.1) for determining the sheet resistance of an unpatterned film using four, equally spaced, in-line probes. Adapted from Smits (1958) and Anner (1990).

This in-line probe technique is also insensitive to in-plane anisotropy between the *a*-axis and *b*-axis crystallographic directions, with

$$R_{\rm s} = (R_{\rm s a-axis} \cdot R_{\rm s b-axis})^{0.5}$$

Other probe/sample configurations are treated in Smits (1958) and also in Wasscher (1961).

#### References

Anner, G. E. (1990). *Planar Processing Primer*, p. 585, Van Nostrand Reinhold.
Smits, F. M. (1958), "Measurements of sheet resistivities with four-point probe," *Bell Syst. Tech.* J., 37, 711–718.

Wasscher, J. D. (1961). "Note on 4-point resistivity measurements on anisotropic conductors", *Philips Res. Rep.* **16**, 301–306.

*A7.2 van der Pauw method for measuring the resistivity and Hall mobility in flat isotropic samples of* arbitrary shape

The van der Pauw method (van der Pauw 1958) is particularly useful for measurements on materials that are not easily fabricated into a long, uniform, bar shapes: the type of configuration that is usually required for common transport measurements. The method works for electrically isotropic samples of *arbitrary* shape, such as that shown in Fig. A7.2a. All that is required is that they have a uniform thickness and be *flat*. Thus, this method is well suited to transport measurements of isotropic crystals or brittle materials where it is difficult to cut out bridge-shaped samples without fracturing the narrow arms. (For electrically *an*isotropic materials, use the Montgomery method, described in the next section, Appendix A7.3.) The sample needs to be deposited or grown flat, or to be capable of being polished flat. Also, it cannot have any holes in it (sorry, a slice of Swiss cheese wouldn't work). For Hall-effect measurements, the van der Pauw method also has the advantage that clover-shaped samples (such as that shown in Fig. A7.2c) can be used, which give a larger Hall effect for the same amount of heat dissipation compared with the usual bridge-shape samples. This can be a significant advantage for materials with low electron mobility.



FIG. A7.2 (a) Arbitrarily shaped, flat sample with four small contacts at arbitrary places on the periphery, which can be used to measure the sample's resistivity and the Hall effect. (b) The resistivity measurement is simplified to one resistivity measurement if the sample has a line of symmetry; two of the contacts are situated along the symmetry line and the other two symmetrically with respect to this line. (c) Clover-shaped sample where the influence of the contact size and placement is significantly reduced. For Hall-effect measurements, the clover shape also gives a larger signal for the same amount of heat dissipation, which can improve the measurement sensitivity for materials with low electron mobility. (Adapted from van der Pauw 1958.)

Here, we present a practical description of how to *use* this method. For details of the derivation, please refer to van der Pauw (1958).

The method consists of attaching small contacts to the sample at its periphery, as illustrated in Figs. A7.2a, b, and c. The diameter of the contact  $\delta$  should be small compared with the overall sample size or diameter *D*. Also, the contacts should be made right at the outer edge of the sample. For disk-shaped samples, the error in resistivity that results from using contacts of size  $\delta$  or located a distance  $\delta$  away from the sample's periphery is given approximately by (van der Pauw 1958)

 $\Delta \rho / \rho \approx (\delta / D)^2,$  (A7.3)

whereas the error in the Hall coefficient  $R_{\rm H}$  is given roughly by

$$\Delta R_{\rm H}/R_{\rm H} \approx \delta/D. \tag{A7.4}$$

The accuracy of the technique is improved if the contacts are spaced apart around the periphery of the sample, as illustrated in Fig. A7.2a. Use of a clover-shaped sample shown in Fig. A7.2c can help minimize the error due to the finite size and placement of the contacts.

After instrumenting the sample in this way, the resistivity of the sample is then determined by measuring two resistances  $R_{AB,CD}$  and  $R_{BC,DA}$ . Here,  $R_{AB,CD}$  is defined as the resistance calculated from the potential difference  $V_D - V_C$  measured between contacts D and C in Fig. A7.2a, divided by the current entering contact A and leaving contact B. The other resistance  $R_{BC,DA}$  is correspondingly defined. The sample's resistivity  $\rho$  is then given by (van der Pauw 1958)

$$\rho = \pi d (2 \ln 2)^{-1} (R_{AB,CD} + R_{BC,DA}) f(R_{AB,CD}/R_{BC,DA}),$$
(A7.5)

where *f* is a function only of the ratio  $R_{AB,CD}/R_{BC,DA}$ . Figure A7.3 gives *f* as a function of  $R_{AB,CD}/R_{BC,DA}$ . Notice from Eq. (A7.5) that there are no measurements of the sample's shape that enter into the determination of  $\rho$ , only the sample's thickness *d*.



FIG. A7.3 The function  $f(R_{AB,CD}/R_{BC,DA})$  in Eq. (A7.5) used to determine the resistivity of an arbitrarily shaped flat sample (from Van Der Pauw 1958).

The measurement is particularly straightforward if the sample has a line of symmetry. In this case, contacts A and C can be placed along this symmetry line, and B and D can be placed symmetrically with respect to this line (Fig. A7.2b). Then, from the reciprocity theorem for passive four poles (interchange of current and voltage contacts), we have, generally, that  $R_{AB,CD} = R_{BC,DA}$ . Thus, a single measurement of resistance is sufficient.

The van der Pauw method is also well suited for measurements of the Hall coefficient. The Hall coefficient is determined by measuring the *change* of the resistance  $R_{AC,BD}$  before and after a uniform magnetic field *B* is applied perpendicular to the plane of the sample. In this case, current is applied to an arbitrary contact A and removed from contact C (not contact B as with the resistivity measurement described above). The sample's Hall coefficient  $R_{H}$  is then given by (van der Pauw 1958)

$$R_{\rm H} = (d/B) \,\Delta R_{\rm AC,BD},\tag{A7.6}$$

where  $\Delta R_{AC,BD}$  is the change in the resistance  $R_{AC,BD}$  produced by the magnetic field *B*.

*Footnote on reverse-field reciprocity method:* For Hall-coefficient or magnetoresistance measurements, the magnetic field is usually reversed and the resistance data averaged to correct

for sample inhomogeneities or voltage-terminal misalignment (in the case of a Hall-bargeometry). The magnetic-field reversal can take a significant amount of time, especially in the case of high magnetic fields, and the extra time can present a problem for some measurements because of temperature drifts, for example.

For such cases, we call attention to the reverse-field reciprocity method by Sample et al. (1987). This method states that the equivalent of the reverse-field resistance measurement can be made by interchanging voltmeter and current sources, without the need to reverse the magnetic field. This is sometimes quite useful since, with computer-controlled data collection and switching, the second resistance measurement can be performed in hundredths of a second, whereas reversing the applied magnetic field can take several minutes.

#### References

Sample, H. H., Bruno, W. J., Sample, S. B., and Sichel, E. K. (1987). "Reverse-field reciprocity for conducting specimens in magnetic fields," *J. Appl. Phys.* **61**, 1079–1084.

Van der Pauw, L. J., (1958). "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," *Philips Res. Rep.* **13**, 1–9.

#### A7.3 Montgomery method for measuring the resistivity of anisotropic materials

The Montgomery method facilitates resistivity measurements of *anisotropic* crystals, providing an easier experimental technique of determining the various components of resistivity along their principal axes. (For isotropic materials, the van der Paaw method is better suited; see Appendix A7.2.) The Montgomery method is especially useful for anisotropic materials with two independent components of resistivity. In this two-component case, two samples are usually needed if the conventional four-terminal method is used, with each sample fabricated into long-bar shapes cut along the principal axes. However, with the Montgomery method, both components can be determined from *one* sample. The method is thus extremely useful for the common case where only one sample is available, or if both resistivity components must be measured simultaneously as, for example, when measuring changes in resistivity through a phase transition in a temperature-drift experiment.

Here, my aim is to present a clear, step-by-step description of the procedure for using this method, as well as some practical guidelines on its limitations. The derivation of the method based on the transformation of *anisotropic* sample coordinates into an equivalent *isotropic* space is given in detail in Montgomery (1971), Logan et al. (1971), and the background references cited therein.

Crystalline types appropriate for the application of this method are summarized in the Table A7.1 in order of increasing complexity. Here, we denote the various resistivity components of these crystal structures as  $\rho_1$ ,  $\rho_2$ , and  $\rho_3$ .

| Crystal structure                   | Number of independent resistivity<br>components required to characterize<br>the resistivity properties                                                                                        | Application comments                                                                                                                                                                                  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trigonal<br>Tetragonal<br>Hexagonal | <i>Two</i> :<br>$\rho_2$ along the <i>c</i> -axis;<br>$\rho_1 = \rho_3$ , mutually perpendicular to<br>each other and to $\rho_2$ .                                                           | $\rho_1$ and $\rho_2$ can be obtained from a <i>single sample face</i> , which is oriented with one edge along the <i>c</i> -axis and the other in any direction perpendicular to the <i>c</i> -axis. |
| Orthorhombic                        | <i>Three</i> :<br>$\rho_1$ , $\rho_2$ , and $\rho_3$ orthogonal<br>components along the principal<br>crystal axes.                                                                            | $\rho_1$ , $\rho_2$ , and $\rho_3$ can be obtained from <i>two sample faces</i> with edges along the three principal crystal axes.                                                                    |
| Monoclinic<br>Triclinic             | <i>Four to six tensor components</i> :<br>Three components are sufficient if<br>specially oriented, but the required<br>orientation cannot be determined<br>from the crystal structure alone. | The Montgomery method is usually<br>too cumbersome for these crystal<br>systems.                                                                                                                      |

 Table A7.1 Application notes for Montgomery method.

The insets to Fig. A7.4 show the face of a sample with a typical contact arrangement for applying the Montgomery method. If the resistivities  $\rho_1$  and  $\rho_2$  along sides  $l_1'$  and  $l_2'$  are expected to be vastly different, it helps to cut the sample face so that  $l_2'/l_1' \approx (\rho_1/\rho_2)^{1/2}$ . This customized shaping avoids an extreme mismatch in the voltages measured along the two directions, which might otherwise make the smaller voltage difficult to measure.



FIG. A7.4 Measured resistance ratio versus the sample-dimension ratio  $l_2/l_1$ . (Unprimed coordinates denote the equivalent isotropic coordinates; see text. The actual physical dimensions of the sample are indicated by primed coordinates  $l_1'$  and  $l_2'$  as shown in the insets.) (Adapted from Montgomery 1971.)

From a practical standpoint, the Montgomery method is easiest to implement if the sample is relatively *thin*. Thicker samples can be accommodated, but the method becomes more cumbersome, as described below under the heading "Thick samples." The simpler thin-sample formulas can be applied to thicker samples, however, if the voltage and current electrodes are extended along the edge of the sample perpendicular to the principal face.

#### Trigonal, tetragonal, and hexagonal crystal systems

#### *Procedure for determining* $\rho_1$ *and* $\rho_2$ :

(1) After connecting instrumentation leads to the sample's principal face (as shown in the insets to Fig. A7.4), measure  $l_1'$ ,  $l_2'$ ,  $l_3'$ ,  $R_1$ , and  $R_2$ . The quantities  $R_1$  and  $R_2$  are defined in the

insets to Fig. A7.4. [Primes are used to indicate the actual physical dimensions  $l_1'$  of the *anisotropic* crystal; unprimed quantities denote the transformed sample dimensions in equivalent *isotropic* space. We have used this convention to keep the same notation as in Montgomery's original equations (Montgomery 1971). The figures shown in the first part of Montgomery's article are for the equivalent isotropic case, and then, later in the article, the real sample dimensions are transformed back to the isotropic case, which can be a bit confusing. The reason this works is that the quantities  $R_1$  and  $R_2$  are the same in either real or equivalent space; that is,  $R_1 = V_1/I_1 = V_1'/I_1'$  and  $R_2 = V_2/I_2 = V_2'/I_2'$ . The figure insets shown here have been modified from Montgomery's article to help clarify the practical application of this method.]

- (2) Determine the ratio  $l_2/l_1$  in the equivalent isotropic space from the experimentally measured ratio  $R_2/R_1$ , by using the curves in Fig. A7.4.
- (3) From the value determined for  $l_1/l_2$  (equivalent space) and the value measured for  $l_1'/l_2'$  (the actual dimensions of the anisotropic crystal), calculate

$$(\rho_2/\rho_1)^{1/2} = (l_2/l_1) \times (l_1'/l_2').$$
(A7.7)

(4) From the ratio  $l_1/l_2$  (equivalent space), determine the dimensionless quantity *H* from the curve in Fig. A7.5.

#### Thin samples:

(5) For thin samples [that is,  $l_3/(l_1l_2)^{1/2} \lesssim 0.5$ , where  $l_3$  is the thickness of the sample in equivalent space determined from Eq. (A7.9) below], calculate

$$(\rho_1 \rho_2)^{1/2} = H \, l_3' \, R_1, \tag{A7.8}$$

(where  $l_{3}$ ' is the thickness of the sample in real space).

(6) Finally, from the quantitative values for  $(\rho_2/\rho_1)^{1/2}$  and  $(\rho_1\rho_2)^{1/2}$  [Eqs. (A7.7) and (A7.8)], calculate  $\rho_1$  and  $\rho_2$ .



FIG. A7.5 The quantity *H* [used in Eq. (A7.8)] versus the sample-dimension ratio (in equivalent isotropic coordinates). (Adapted from Montgomery 1971.)

#### Thick samples:

Steps 1 through 4 are the same as above.

(5) For thick samples [  $l_3/(l_1l_2)^{1/2} \gtrsim 0.5$ ], instead of step 5 above, calculate

$$l_{3}/(l_{1}l_{2})^{1/2} = (\rho_{1}/\rho_{2})^{1/4} \times l_{3}'/(l_{1}'l_{2}')^{1/2}, \qquad (A7.9)$$

where the numerical value of  $(\rho_1/\rho_2)^{1/4}$  is calculated from the value of  $(\rho_2/\rho_1)^{1/2}$  determined in step 3, and  $l_3'/(l_1'l_2')^{1/2}$  is calculated from the sample dimensions measured in step 1. [In this step we have taken  $\rho_3$  and  $\rho_1$  to be the equivalent resistivity directions (with  $\rho_3$  defined as the resistivity perpendicular to the sample face); if, on the other hand,  $\rho_3 = \rho_2$ , interchange subscripts 1 and 2 in Eq. (A7.9) above and in Eq. (A7.10) below.]

- (6) Use the value of  $l_3/(l_1l_2)^{1/2}$  from Eq. (A7.9) to determine  $E/(l_1l_2)^{1/2}$  from Fig. A7.6 (where *E* is defined as the effective sample thickness in equivalent isotropic space).
- (7) Calculate E' (the effective sample thickness in anisotropic real space) from

$$E'/(l_1'l_2')^{1/2} = (\rho_2/\rho_1)^{1/4} \times E/(l_1l_2)^{1/2},$$
(A7.10)

where the value of  $\rho_2/\rho_1$  was determined in step 3.

(8) Calculate

$$(\rho_1 \rho_2)^{1/2} = H E' R_1, \tag{A7.11}$$

(9) Finally, from the quantitative values for  $(\rho_2/\rho_1)^{1/2}$  and  $(\rho_1\rho_2)^{1/2}$  [Eqs. (A7.7) and (A7.11)], calculate  $\rho_1$  and  $\rho_2$ .



FIG. A7.6 Normalized effective thickness E vs. normalized sample thickness  $l_3$  for various ratios of the sample dimensions  $l_2/l_1$  (in equivalent isotropic coordinates). (The ratio  $l_2/l_1$  was determined from Fig. A7.4 in Step 2 above.) (From Montgomery 1971.)

The numerical limit given in step (5) [i.e.,  $l_3/(l_1l_2)^{1/2} \gtrsim 0.5$ ] for the *thin* and *thicker* cases is my subjective estimate for the validity of these two approximations. That is, the thin-sample case requires that  $E \approx l_3$ , which from Fig. A7.6 would appear to be valid for  $l_3/(l_1l_2)^{1/2} \lesssim 0.5$  [or in real space,  $(\rho_1/\rho_2)^{1/4} \times l_3'/(l_1'l_2')^{1/2} \lesssim 0.5$  from Eq. (A7.9)].

*Practical Note*: To simplify the application of the method when many calculations need to be made for a *single* sample (such as in a temperature-drift experiment), calculate the

multiplying factors to convert  $R_1$  to  $\rho_1$  and  $\rho_2$  for several ratios of  $R_1/R_2$ , and plot these versus  $R_1/R_2$  for easier reduction of the data. Nearly straight-line relations are usually obtained on a log–log plot.

#### Orthorhombic crystal systems

#### *Procedure for determining* $\rho_1$ , $\rho_2$ , and $\rho_3$ :

With three unknown components of resistivity, the Montgomery method requires measurements on a *second* sample with its face cut normal to that of the first sample and also cut thin enough that the thin-sample condition is met  $[i.e., l_3/(l_1l_2)^{1/2} \leq 0.5$  as described above for the two-component case]. Then, the procedure for evaluating the data for the second sample face is the same as that for the *thin*-sample case given above, with corresponding new measured values assigned to  $l_1'$ ,  $l_2'$ , and  $l_3'$ . This works because all the equations are independent of  $\rho_3$  for the *thin*-sample case.

For *thicker* orthorhombic crystals  $[l_3/(l_1l_2)^{1/2} \gtrsim 0.5]$ , there appears to be no straightforward procedure for applying the Montgomery method unless one assumes a value for  $\rho_3$  and uses an iterative approach (Montgomery 1971). Again, the best procedure in this case would be to mimic the thin-sample case by extending the electrode contacts along the edge of the sample perpendicular to the principal face.

#### References

- Logan, B. F., Rice, S. O., and Wick, R. F. (1971). "Series for computing current flow in a rectangular block," J. Appl. Phys. 42, 2975–2980.
- Montgomery, H. C. (1971). "Method for measuring electrical resistivity of anisotropic materials," *J. Appl. Phys.* **42**, 2971–2975.

#### (ii) Sample-holder material properties (ref. Chapter 7)

*A7.4 Sample-holder materials: Thermal contraction on cooling to liquid-helium and liquidnitrogen temperatures (Sec. 7.3.2)* 

The total linear contraction from room temperature to the indicated temperature T is defined as

$$\Delta L/L_{293K-T} \equiv (L_{293K} - L_T)/L_{293K}.$$

The coefficient of linear expansion at room temperature is defined as

$$\alpha_{293K} \equiv (1/L) \, \mathrm{d}L/\mathrm{d}T.$$

Since the thermal expansion/contraction is approximately linear above room temperature, the total contraction from an upper reference temperature  $T_u$  above room temperature (such as soldering temperature) to a low temperature T can be determined approximately from

$$\Delta L/L_{T_u-T} = \Delta L/L_{293K-T} + (\alpha_{293K}) (T_u - 293 \text{ K}).$$

Tabulated values are generally arranged within each material group by the magnitude of the thermal contraction to facilitate finding sample-holder materials with a thermal contraction which matches that of a given sample.

Additional thermal-expansion data for other materials and temperatures are tabulated in Appendix A6.4.

| Material                           | $\Delta L/L_{293K-4K}$ | $\Delta L/L_{293K-77K}$     | α <sub>293K</sub>          |
|------------------------------------|------------------------|-----------------------------|----------------------------|
|                                    | [%]                    | [%]                         | $[10^{-6} \text{ K}^{-1}]$ |
|                                    |                        |                             |                            |
| <u>Metals</u>                      | 0 1 4 2 <sup>c</sup>   | 0.120 <sup>m</sup>          | 71 <sup>S</sup>            |
| Titonium <sup>c</sup>              | 0.143                  | 0.130<br>0.142 <sup>m</sup> | /.1                        |
|                                    | 0.151                  | 0.145                       | 8.3                        |
| Iron                               | 0.198                  | 0.190                       | 11.5                       |
|                                    | 0.224                  | 0.212 <sup>m</sup>          | 12.5                       |
| Copper                             | 0.324                  | 0.302                       | 16.7                       |
| Silver 4                           | 0.412                  | $0.3/0^{\circ}$             | 18.5                       |
| Aluminum                           | 0.415                  | 0.393 **                    | 22.5                       |
| <u>Alloys</u>                      |                        |                             |                            |
| Fe–36Ni <sup>f,m</sup>             | ~0.037                 | 0.038                       | 3.0                        |
| Fe–9Ni <sup>d</sup>                | 0.195                  | 0.188                       | 11.5                       |
|                                    |                        |                             |                            |
| Ti–6%Al-4%V <sup>d</sup>           | 0.173                  | 0.163 <sup>m</sup>          | 8.0                        |
| Ti-5%Al-2.5%Sn <sup>n</sup>        | 0.20                   | 0.17                        | 8.3                        |
|                                    |                        |                             |                            |
| Hastelloy C <sup>t</sup>           | 0.218                  | 0.216                       | 10.9 <sup>u</sup>          |
| Inconel 718 <sup>f</sup>           | 0.24                   | 0.22                        | 13.0                       |
|                                    |                        |                             |                            |
| Monel, S (67Ni–30Cu) <sup>d</sup>  | 0.25                   | 0.24 <sup>m</sup>           | 14.5                       |
|                                    |                        |                             |                            |
| SS 304 <sup>r</sup>                | 0.29                   | 0.28 <sup>b</sup>           | 15.1                       |
| SS 304L <sup>d</sup>               | 0.31                   | 0.28                        | 15.5                       |
| SS 316 <sup> r</sup>               | 0.30                   | 0.28 <sup>b</sup>           | 15.2                       |
|                                    |                        |                             |                            |
| Cu-2%Be (UNS C17200                | 0.31                   | 0.30                        | 18.1                       |
| -TH 04) °                          |                        |                             |                            |
|                                    |                        |                             |                            |
| Brass 70/30 <sup>d</sup>           | 0.37                   | 0.34 <sup>m</sup>           | 17.5                       |
|                                    |                        |                             |                            |
| Bronze (Cu–5wt%Sn) <sup>n</sup>    | 0.33                   | 0.29                        | 15.0                       |
| Bronze (Cu-10wt%Sn) <sup>n</sup>   | 0.38                   | 0.35                        | 18.2                       |
| Bronze (Cu–13.5wt%Sn) <sup>k</sup> | 0.40                   | 0.36                        | 18.8                       |
|                                    |                        |                             |                            |
| Aluminum 2024-T86 <sup>f</sup>     | 0.396                  | 0.374                       | 21.5                       |
| Aluminum 7045-T73 <sup>f</sup>     | 0.419                  | 0.394                       | 23.5                       |
|                                    |                        |                             |                            |
| Soft-Solder 50/50 °                | 0.514                  | 0.480 <sup>m</sup>          | 25.5                       |
|                                    |                        |                             |                            |

# Thermal contraction of sample-holder materials

| Material                                                                       | $\Delta L/L_{293K-4K}$ [%] | $\Delta L/L_{293 m K-77K}$ [%]         | $lpha_{293K}$ [10 <sup>-6</sup> K <sup>-1</sup> ] |
|--------------------------------------------------------------------------------|----------------------------|----------------------------------------|---------------------------------------------------|
| Insulators                                                                     |                            |                                        |                                                   |
| Pyrex <sup>TM j</sup>                                                          | 0.055                      | 0.054                                  | 3.0                                               |
| G-11 (warp) <sup>a</sup>                                                       | 0.21                       | 0.19                                   | 11                                                |
| G-11 (normal) "                                                                | 0.62                       | 0.55                                   | 37                                                |
| G-10CR (warp direction) <sup>a</sup>                                           | 0.24                       | 0.21 <sup>m</sup>                      | 12.5                                              |
| G-10CR (normal direction) <sup>a</sup>                                         | 0.71                       | 0.64 <sup>m</sup>                      | 41                                                |
| Phenolic, Cotton (warp) <sup>f</sup><br>Phenolic, Cotton (normal) <sup>f</sup> | 0.26<br>0.73               | 0.24 <sup>m</sup><br>0.64 <sup>m</sup> | 15<br>42                                          |
| Stycast 2850 FT <sup>™ s</sup>                                                 | 0.44                       | 0.40                                   | 28                                                |
| CTFE °                                                                         | 1.14                       | 0.97 <sup>m</sup>                      | 67                                                |
| Epoxy <sup>g</sup>                                                             | 1.16                       | 1.03 <sup>m</sup>                      | 66                                                |
| Plexiglas <sup>TM j</sup>                                                      | 1.22                       | 1.06 <sup>m</sup>                      | 75                                                |
| Nylon <sup>TM c</sup>                                                          | 1.39                       | 1.26 <sup>m</sup>                      | 80                                                |
| TFE (Teflon <sup>™</sup> ) <sup>i</sup>                                        | 2.14                       | 1.94 <sup>m</sup>                      | 250                                               |

<sup>a</sup> A. F. Clark, G. Fujii, and M.A. Ranney (1981), IEEE Trans. Magn. MAG-17, 2316-2319.

- <sup>b</sup> T. A. Hahn (1970), J. Appl. Phys. 41, 5096–5101.
- <sup>c</sup> R. J. Corruccini and J. J. Gniewek (1961), *Thermal Expansion of Technical Solids at Low Temperatures*. Monograph 29, National Bureau of Standards, U.S. Government Printing Office, Washington, D.C.
- <sup>d</sup> V. Arp, J. H. Wilson, L. Winrich, and P. Sikora, P. (1962), Cryogenics 2, 230–235.
- <sup>f</sup> A. F. Clark (1968), *Cryogenics* **8**, 282–289.
- <sup>g</sup> K. Dahlerup–Peterson and A. Perrot (1979). *Properties of Organic Composite Materials at Cryogenic Temperatures*. ISR-BOM/79-39, CERN, Geneva, Switzerland.
- <sup>i</sup> R. K. Kirby (1956), J. Res. Natl. Bur. Stand. 57, 91–94.
- <sup>j</sup> H. L. Laquer and E. L. Head (1952), *Low Temperature Thermal Expansion of Plastics*. AECU-2161, Technical Information Service Atomic Energy Commission., Oak Ridge, Tennessee.
- <sup>k</sup> G. Rupp (1980), in *Multifilamentary 15 Superconductors*, eds. M. Suenaga and A. F. Clark, pp. 155–170, Plenum Press.
- <sup>1</sup>D. S. Easton, D. M. Kroeger, W. Specking, and C. C.Koch, (1980), J. Appl. Phys. 51, 2748–2757.
- <sup>m</sup> A. F. Clark (1983), Chapter 3, in *Materials at Low Temperatures*, pp. 96–97, ASM International, Materials Park, Ohio.
- <sup>n</sup> Handbook on Materials for Superconducting Machinery (1977), MCIC-HB-04. Battelle, Columbus, Ohio.
- <sup>o</sup> Compilation by A. F. Clark (1983), Chapter 3 in *Materials at Low Temperatures*, pp. 96–97, ASM International, Materials Park, Ohio.

- <sup>p</sup> N. J. Simon, E. S. Drexler, and R.P. Reed (1992), *Properties of Copper and Copper Alloys at Cryogenic Temperatures*, U.S. Government Printing Office, Washington, D.C.; N. Cheggour and D. P. Hampshire (2000), *Rev. Sci. Instrum.* **71**, 4521–4529.
- <sup>q</sup> V. J. Johnson, ed, (1961), Properties of Materials at Low Temperature, Phase 1, U.S. Air Force.
- <sup>r</sup> *Handbook on Materials for Superconducting Machinery* (1974, 1976), National Bureau of Standards, U.S. Government Printing Office, Washington, D.C.
- <sup>s</sup> C. A. Swenson (1997), Rev. Sci. Instrum. 68, 1312–1315.
- <sup>t</sup> Y. S. Touloukian (1975), *Thermal Expansion*, **12**, 1248.
- <sup>u</sup> R. Radebaugh et al. (2001), <u>http://www.cryogenics.nist.gov/</u> and the references listed therein.

*A7.5 Superconductor materials: Thermal contraction on cooling to liquid-helium and liquidnitrogen temperatures (Sec. 7.3.2)* 

The total linear contraction from room temperature to the indicated temperature T is defined as

$$\Delta L/L_{293K-T} \equiv (L_{293K} - L_T)/L_{293K}.$$

The coefficient of linear expansion at room temperature is defined as

$$\alpha_{293K} \equiv (1/L) \, \mathrm{d}L/\mathrm{d}T.$$

Since the thermal expansion/contraction is approximately linear above room temperature, the total contraction from an upper reference temperature  $T_u$  above room temperature (such as soldering temperature) to a low temperature *T* can be determined approximately from

$$\Delta L/L_{T_u-T} = \Delta L/L_{293K-T} + (\alpha_{293K}) (T_u - 293 \text{ K}).$$

Tabulated values are generally arranged within each material group by the magnitude of the thermal contraction.

|                                                                        | $\Delta L/L_{293K-4K}$ | $\Delta L/L_{293K-77K}$ | Q293K                      |  |
|------------------------------------------------------------------------|------------------------|-------------------------|----------------------------|--|
| Material                                                               | [%]                    | [%]                     | $[10^{-6} \text{ K}^{-1}]$ |  |
|                                                                        |                        |                         |                            |  |
| <u>High-T<sub>c</sub> Superconductors</u>                              |                        |                         |                            |  |
| YBCO polycrystal <sup>i</sup>                                          | 0.23                   | 0.21                    | 11.5                       |  |
| YBCO $a$ -axis <sup>i</sup>                                            | 0.13                   | 0.12                    | 7.4                        |  |
| YBCO $b$ -axis <sup>i</sup>                                            | 0.15                   | 0.12                    | 9.6                        |  |
| YBCO $c$ -axis <sup>i</sup>                                            | 0.38                   | 0.34                    | 17.7                       |  |
| YBCO <i>a b</i> -plane avg $^{i}$                                      | 0.56                   | 0.14                    | 8.5                        |  |
|                                                                        | 0.10                   |                         | 0.0                        |  |
| Bi-2212                                                                |                        |                         |                            |  |
| <i>a,b</i> -axes <sup>°</sup>                                          | 0.15                   | 0.14                    | 8.3                        |  |
| <i>c</i> -axis <sup>°</sup>                                            | 0.30                   | 0.27                    | 15.1                       |  |
| $Ag^{u}$                                                               | 0.41                   | 0.37                    | 18.5                       |  |
| -                                                                      |                        |                         |                            |  |
| Bi-2223/61%Ag alloy <sup>a,b</sup>                                     |                        | 0.24                    |                            |  |
| Bi-2223 <i>a,b</i> -axes <sup>o,p</sup>                                |                        | 0.22                    |                            |  |
| Ag <sup>q</sup>                                                        | 0.41                   | 0.37                    | 18.5                       |  |
| $(\text{Pi} 2222) / 75 \text{ well} / \Lambda \alpha \text{ wire}^{1}$ |                        |                         |                            |  |
| (DI-2223)//3V01/0Ag wite                                               | 0.22                   | 0.23                    | 16                         |  |
| $2^{nd}$ and $down$ (difference due                                    | 0.22                   | 0.23                    | 10                         |  |
| 2 cool-down (difference due                                            | 0.29                   | 0.30                    | 15                         |  |
| to Ag yielding)                                                        |                        |                         |                            |  |
| 11-2225                                                                |                        |                         |                            |  |
| <u>Low-T<sub>c</sub> Superconductors</u>                               |                        |                         |                            |  |
|                                                                        |                        |                         |                            |  |
| (N–67wt%Ti)/64vol%Cu wire <sup>c</sup>                                 | 0.26                   | 0.25 <sup>J</sup>       | 12.5                       |  |
| Nb–67wt%Ti                                                             | 0.13 <sup>J,n</sup>    | ;                       | 5.8 <sup>J</sup>           |  |
| Nb–45wt%Ti                                                             | 0.19 "                 | 0.17 <sup>J</sup>       | 8.2                        |  |
| Nb <sub>3</sub> Sn wire (10vol%Nb <sub>3</sub> Sn)                     | 0.30 <sup>g,m</sup>    | 0.28 <sup>g,m</sup>     |                            |  |
| Nb <sub>3</sub> Sn wire (20vol%Nb <sub>3</sub> Sn                      | 0.28 <sup>g,m</sup>    | 0.26 <sup>g,m</sup>     |                            |  |
| Nb <sub>3</sub> Sn                                                     | ~0.16 <sup>j</sup>     | 0.14 <sup>j</sup>       | 7.6 <sup>d</sup>           |  |
| Bronze (Cu–13.5wt%Sn) <sup>f</sup>                                     | 0.40                   | 0.36                    | 18.8                       |  |
| Cu                                                                     | 0.32 <sup>k</sup>      | 0.30 <sup>j</sup>       | 16.7 <sup>e,d</sup>        |  |
| Nb                                                                     | 0.14 <sup>e</sup>      | 0.13 <sup>j</sup>       | 7.3 <sup>r</sup>           |  |
| Та                                                                     | 0.14 <sup>e</sup>      | 0.13 <sup>e</sup>       | 6.3 <sup>e,d</sup>         |  |

# Thermal contraction of superconductor materials

<sup>a</sup> J. P. Voccio, O. O. Ige, S. J. Young, and C. C. Duchaine (2001), *IEEE Trans. Appl. Supercond.* 11, 3070–3073.

<sup>b</sup> E. Harley (2004), American Superconductor Corp., personal communication.

<sup>c</sup> A. F. Clark (1968), *Cryogenics* **8**, 282–289.

<sup>d</sup>D. S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch, (1980), J. Appl. Phys. 51, 2748.
- <sup>e</sup> R. J. Corruccini, and J. J. Gniewek (1961) *Thermal Expansion of Technical Solids at Low Temperatures*. Monograph 29, National Bureau of Standards, U.S. Government Printing Office, Washington, D.C.
- <sup>f</sup> G. Rupp (1980), pp. 155–170 in *Multifilamentary 15 Superconductors*, eds. M. Suenaga and A. F. Clark), Plenum Press, New York.
- <sup>g</sup> L. F. Goodrich, S. L. Bray, and T. C. Stauffer (1990), Adv. Cryog. Eng. (Mater.) 36A, 117-124.
- <sup>h</sup> F. J. Jelinek and E. W. Collings (1975), "Low-temperature thermal expansion and specific heat properties of structural materials," in *Materials Research in Support of Superconducting Machinery—IV*, eds. A. F. Clark, R. P. Reed, and E. C. Van Reuth. Fourth Semi-Annual Technical Report, National Bureau of Standards, U.S. Government Printing Office, Washington, D.C.
- <sup>i</sup> Calculated from data by H. You, J. D. Axe, X. B. Kan, S. Hashimoto, S. C. Moss, J. Z. Liu, G. W. Crabtree, and D. J. Lam (1988), *Phys. Rev.* B38, 9213–9216.
- <sup>j</sup> Compilation by A. F. Clark (1983), Chapter 3 in *Materials at Low Temperatures*, ASM International, Materials Park, Ohio.
- <sup>k</sup> T. A. Hahn (1970), J. Appl. Phys. 41, 5096–5101.
- <sup>1</sup>N. Yamada, K. Nara, M. Okaji, T. Hikata, T. Kaneko, N. Sadakata (1998), Cryogenics 38, 397–399.
- <sup>m</sup> K. Tachikawa, K. Itoh, H. Wada, D. Gould, H. Jones, C. R. Walters, L. F. Goodrich, J. W. Ekin, and S. L. Bray (1989), *IEEE Trans. Magn.* **25**, 2368-2374.
- <sup>o</sup> M. Okaji, K. Nara, H. Kato, K. Michishita, and Y. Kubo (1994), Cryogenics 34, 163–165.
- <sup>p</sup> S. Ochaia, K. Hayashi, and K. Osamura (1991), Cryogenics 31, 954–961.
- <sup>q</sup> R. J. Corruccini and J. J. Gniewek (1961), *Thermal Expansion of Technical Solids at Low Temperatures*, National Bureau of Standards Monograph 29, U.S. Government Printing Office, Washington, D.C.
- <sup>r</sup> CRC Handbook of Chemistry and Physics (2001), 82<sup>nd</sup> edition, CRC Press, Boca Raton, Florida.

| Material                                                                    | The              | ermal Conductiv    | vity              | Thermal Expansion  |                    |                            |
|-----------------------------------------------------------------------------|------------------|--------------------|-------------------|--------------------|--------------------|----------------------------|
|                                                                             | λ                | λ                  | λ                 | $\Delta L/L$       | $\Delta L/L$       | α                          |
|                                                                             | (4K)             | (77K)              | (295K)            | (293K–4K)          | (293K–77K)         | (293K)                     |
|                                                                             | [W/(m·K)]        | [W/(m·K)]          | [W/(m·K)]         | [%]                | [%]                | $[10^{-6} \text{ K}^{-1}]$ |
| Al N (   <i>a</i> -axis) <sup>j</sup>                                       | _                | _                  |                   | _                  | 0.032              | 3.7                        |
| (   <i>c</i> -axis) <sup>j</sup>                                            |                  |                    |                   |                    | 0.025              | 3.0                        |
| Sapphire (Al <sub>2</sub> O <sub>3</sub> ) <sup>1</sup> (   <i>c</i> -axis) | 451 <sup>e</sup> | 10300 <sup>e</sup> |                   | 0.079              | 0.078              | 5.4 <sup>j</sup>           |
| Beryllia                                                                    | ~1 <sup>i</sup>  | $\sim 1000^{i}$    |                   |                    |                    |                            |
| C (diamond)                                                                 |                  |                    |                   | 0.024 <sup>a</sup> | 0.024 <sup>a</sup> | 1.0 <sup>a</sup>           |
| LaAlO <sub>3</sub>                                                          |                  |                    |                   |                    |                    | 12.6 <sup>b</sup>          |
| MgO                                                                         | 82 <sup>d</sup>  | 507 <sup>d</sup>   | 61 <sup>d</sup>   | 0.139 <sup>a</sup> | 0.137 <sup>a</sup> | 10.2 <sup>a</sup>          |
| NdGaO <sub>3</sub>                                                          |                  |                    |                   |                    |                    | 7.8 <sup>b</sup>           |
| Ni                                                                          |                  |                    | 90.7 <sup>f</sup> | 0.224 <sup>c</sup> | 0.212 °            | 13.4 <sup>g</sup>          |
| Quartz (   optic axis)                                                      | 420              | 32                 |                   |                    | 0.104 <sup>a</sup> | 7.5 <sup>a</sup>           |
| Si                                                                          |                  |                    | 124 <sup>m</sup>  | 0.022 <sup>a</sup> | 0.023 <sup>a</sup> | 2.32 <sup>a</sup>          |
| α-SiC ( $\lambda$ : crystal, $\perp$ to <i>c</i> -axis)                     | 27 <sup>k</sup>  | 4000 <sup>k</sup>  | 510 <sup>k</sup>  | -                  | 0.030 <sup>j</sup> | 3.7 <sup>j</sup>           |
| ( $\Delta L/L$ : polycrystal avg.)                                          |                  |                    |                   |                    |                    |                            |
| SrTiO <sub>3</sub>                                                          |                  |                    | $60^{\rm f}$      |                    |                    | 11.1 <sup>b</sup>          |
| Y-stabilized Zirconia (YSZ)                                                 |                  |                    |                   |                    |                    | 10.3 <sup>b</sup>          |
| Cu (OFHC) (for reference)                                                   | 630 <sup>h</sup> | 544 <sup>h</sup>   | 397 <sup>h</sup>  | 0.324 <sup>c</sup> | 0.302 °            | 16.7 °                     |

*A7.6 Thin-film substrate materials: Thermal conductivity and thermal contraction (Sec. 7.4.1 and Sec. 7.4.2)* 

<sup>a</sup> R. J. Corruccini and J. J. Gniewek (1961), *Thermal Expansion of Technical Solids at Low Temperatures*, National Bureau of Standards Monograph 29, U.S. Government Printing Office, Washington, D.C.

<sup>b</sup> Shinkosha Co., Ltd. Tokyo, Japan

<sup>c</sup> A. F. Clark (1983), Chapter 3 in Materials At Low Temperatures, ASM International, Materials Park, Ohio.

<sup>d</sup> Y.S. Touloukian and E. H. Buyco, E.H. (1970), *Specific Heat*, Vols. 1 and 2, Plenum Press, New York.

<sup>e</sup> R. Radebaugh et al. (2003), <u>http://www.cryogenics.nist.gov/</u> and the references listed therein.

<sup>f</sup> Compiled by M. Paranthaman, Oak Ridge National Laboratory, Oak Ridge, Tennessee; and from J. Evetts, University of Cambridge, UK

<sup>g</sup> CRC Handbook of Chemistry and Physics (2001), 82<sup>nd</sup> edition, CRC Press, Boca Raton, Florida.

<sup>h</sup> Cryogenic Materials Properties Program CD, Release B-01 (June 2001), Cryogenic Information Center, 5445 Conestoga Ct., Ste. 2C, Boulder, CO 80301-2724, Ph. (303) 442-0425, Fax (303) 443-1821

<sup>i</sup> Lake Shore Cryotronics, Inc. (2002), Temperature Measurement and Control, Westerville, Ohio.

<sup>j</sup> Y. S. Touloukian (1977), *Thermal Expansion: nonmetallic solids*, Vol. 13, IFI/Plenum, New York.

<sup>k</sup> Y. S. Touloukian (1970), *Thermal Conductivity: metallic elements and alloys*, Vol. 2, IFI/Plenum, New York.

- <sup>1</sup> For the thermal conductivity data, the heat flow is 60 degrees away from the hexagonal axis; values are thought to be accurate to within 10 % to 15 % at temperatures above 60 K, but highly sensitive to small physical and chemical variations below 60 K. Thermal linear-expansion data are parallel to the *c*-axis.
- <sup>m</sup> CRC Handbook of Chemistry and Physics (2002), 83<sup>st</sup> edition, CRC Press, Boca Raton, Florida.

|           | Wire-bond lead                 |                 |                                           |  |
|-----------|--------------------------------|-----------------|-------------------------------------------|--|
| Substrate | Metal Film                     | Material        | Diameter or<br>Thickness<br>Range<br>[mm] |  |
| Glass     | Aluminum                       | Aluminum wire   | 0.05 to 0.25                              |  |
|           | Aluminum                       | Gold wire       | 0.08                                      |  |
|           | Nickel                         | Aluminum wire   | 0.05 to 0.5                               |  |
|           | Nickel                         | Gold wire       | 0.05 to 0.25                              |  |
|           | Copper                         | Aluminum wire   | 0.05 to 0.25                              |  |
|           | Gold                           | Aluminum wire   | 0.05 to 0.25                              |  |
|           | Gold                           | Gold wire       | 0.08                                      |  |
|           | Tantalum                       | Aluminum wire   | 0.05 to 0.5                               |  |
|           | Chromel                        | Aluminum wire   | 0.05 to 0.25                              |  |
|           | Chromel                        | Gold wire       | 0.08                                      |  |
|           | Nichrome                       | Aluminum wire   | 0.06 to 0.5                               |  |
|           | Platinum                       | Aluminum wire   | 0.25                                      |  |
|           | Gold–Platinum                  | Aluminum wire   | 0.25                                      |  |
|           | Palladium                      | Aluminum wire   | 0.25                                      |  |
|           | Silver                         | Aluminum wire   | 0.25                                      |  |
|           | Copper on silver               | Copper ribbon   | 0.7                                       |  |
| Alumina   | Molybdenum                     | Aluminum ribbon | 0.08 to 0.13                              |  |
|           | Gold–platinum                  | Aluminum wire   | 0.25                                      |  |
|           | Gold on molybdenum-lithium     | Nickel ribbon   | 0.05                                      |  |
|           | Copper                         | Nickel ribbon   | 0.05                                      |  |
|           | Silver on molybdenum-manganese | Nickel ribbon   | 0.05                                      |  |
| Silicon   | Aluminum                       | Aluminum wire   | 0.25 to 0.5                               |  |
|           | Aluminum                       | Gold wire       | 0.05                                      |  |
| Quartz    | Silver                         | Aluminum wire   | 0.25                                      |  |
| Ceramic   | Silver                         | Aluminum wire   | 0.25                                      |  |

A7.7 Ultrasonic wire-bond material combinations (Sec. 7.4.3)

From Welding Handbook (1991), 8<sup>th</sup> edition, Vol. 2, Chapter 25, pp. 784–812, American Welding Society, Miami, Florida; G. G. Harmon (1997), Wire Bonding in Microelectronics: Materials, Processes, Reliability, and Yield, p. 7, McGraw-Hill.

### A8. Sample contacts (ref. Chapter 8)

| Contact Type                                                       | Specific Contact<br>Resistivity $\rho_c^*$<br>[ $\Omega$ ·cm <sup>2</sup> ] | Common Usage/Comments                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low-T <sub>c</sub> Superconductors (copper sheathed)               |                                                                             |                                                                                                                                                                                                                                                            |
| Cu / 63Sn-37Pb / Cu <sup>a</sup>                                   | $4 \times 10^{-9}$                                                          | Copper-to-copper joint soldered under light pressure                                                                                                                                                                                                       |
| High-T <sub>c</sub> Bi-Sr-Ca-Cu-O oxide superconductors            |                                                                             |                                                                                                                                                                                                                                                            |
| Silver sheath/BSCCO interface <sup>d</sup>                         | <<10 <sup>-8</sup>                                                          | Copper connections to the silver sheath<br>can be soldered with standard eutectic<br>Pb–Sn solder and have $\rho_c$ values<br>comparable to those of the copper-to-<br>copper joints listed above.                                                         |
| <u>High-T<sub>c</sub> Y–Ba–Cu–O oxide superconductors</u>          |                                                                             |                                                                                                                                                                                                                                                            |
| Silver or gold deposited on YBCO:                                  |                                                                             |                                                                                                                                                                                                                                                            |
| <i>In-situ</i> <sup>c</sup> deposited; no anneal <sup>b</sup>      | $10^{-9}$ to $10^{-7}$                                                      | Contacts to oxide superconductor films, typically for electronic applications                                                                                                                                                                              |
| <i>Ex-situ</i> $^{\circ}$ deposited; oxygen annealed $^{\circ}$    | $10^{-9}$ to $10^{-6}$                                                      | Contacts for high current applications, including "coated conductors"                                                                                                                                                                                      |
| <i>Ex-situ</i> deposited; no oxygen anneal <sup>f</sup>            | 10 <sup>-5</sup> to 10 <sup>-2</sup>                                        | Applications where oxygen annealing is<br>precluded by other sensitive materials or<br>processing steps. The lowest values of<br>$\rho_c$ obtained when the superconductor<br>surface is ion milled or sputter etched<br>just prior to contact deposition. |
| Soldered Y–Ba–Cu–O oxide superconductors                           |                                                                             |                                                                                                                                                                                                                                                            |
| Indium-solder connections to silver or gold pads deposited on YBCO | $10^{-1}$ to $10^{-6}$                                                      | High-current coated-conductor<br>applications. The lowest values of $\rho_c$ are<br>obtained when the gold or silver pad<br>thickness is at least 7 µm to 10 µm thick<br>(see the subtopic on soldering in Sec.<br>8.3.3)                                  |
| Indium solder applied directly on YBCO <sup>g</sup>                | $10^{-2}$ to $10^{-1}$                                                      | Soldered voltage contacts for bulk oxide superconductors                                                                                                                                                                                                   |

### A8.1 Overview of contacts for low- $T_c$ and high- $T_c$ superconductors. (Secs. 8.3 and 8.4)

\* For low- $T_c$  superconductors, the contact resistivity was measured at 4.2 K. For high- $T_c$  superconductors, the contact resistivity does not appreciably change with temperature below  $T_c$  and thus applies to the entire temperature range from liquid-helium to liquid-nitrogen temperatures.

- <sup>a</sup> L. F. Goodrich and J. W. Ekin (1981), *IEEE Trans. Magn.* 17, 69–72.
- <sup>b</sup> M. Lee, D. Lew, C-B. Eom, T. H. Geballe, and M. R. Beasley (1990), *Appl. Phys. Lett.* 57, 1152–1154.
- <sup>c</sup> "Ex-situ" and "in-situ" contacts refer to whether the superconductor surface is exposed to air before the noblemetal contact pad is deposited, as described in Sec. 8.4.2 on superconductor-film contact techniques.
- <sup>d</sup> Y. S. Cha, M. T. Lanagan, K. E. Gray, V. Z. Jankus, and Y. Fang (1994), *Appl. Supercond.* 2, 47–59.
- <sup>e</sup> J. W. Ekin, T. M. Larson, N. F. Bergren, A. J. Nelson, A. B. Swartzlander, L. L. Kazmerski, A. J. Panson, and B. A. Blankenship, B. A. (1988), *Appl. Phys Lett.* **52**, 1819–1821.
- <sup>f</sup> J. W. Ekin, A. J. Panson, and B. A. Blankenship (1988), *Appl. Phys. Lett.* 52, 331-333.
- <sup>g</sup> J. W. Ekin, unpublished data, National Institute of Standards and Technology, Boulder, Colorado.

A8.2 Contact methods for voltage and current connections to bare YBCO superconductors. (Secs. 8.3.1, 8.3.2, 8.3.3, and 8.4.2)

Contact methods are ordered within each category by the magnitude of contact resistivity  $\rho_c$ , with the best (lowest  $\rho_c$ ) listed first.

Any of the *current* contact methods can also be used for *voltage* contacts, but they are more complex to fabricate than the simple techniques listed for voltage contacts.

Contact materials that do not work well with the oxide superconductors are included at the end of the table for pedagogical reasons (described in Sec. 8.3.3).

| Contact Method                                                                           | Procedure                                                                                                                                                 | $ ho_{c}^{a}$ [ $\Omega$ ·cm <sup>2</sup> ] | Comments                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage contacts                                                                         |                                                                                                                                                           |                                             |                                                                                                                                                                                                                           |
| In-3wt.%Ag solder                                                                        | For these solders to wet YBCO surfaces, lightly scratch the sample                                                                                        | $10^{-2} - 10^{-1}$                         | $T_{\text{melt}} = 143 \text{ °C};$ eutectic                                                                                                                                                                              |
| In–48wt.%Sn solder                                                                       | surface under the molten solder with<br>the soldering-iron tip, or use an<br>ultrasonic soldering iron; see<br>"Soldered" and "Wetting" in<br>Sec. 8.3.2. | .د                                          | $T_{\text{melt}} = 118 \text{ °C}$ ; eutectic; beware<br>that Sn dissolves thin silver<br>or gold films                                                                                                                   |
| Spring contacts                                                                          | Beryllium copper or other conducting<br>spring stock is used to contact the<br>sample; see "Pressure contacts" in<br>Sec. 8.3.2.                          |                                             | Silver or gold pads deposited<br>on the test sample lower the<br>contact resistivity                                                                                                                                      |
| Silver paint                                                                             |                                                                                                                                                           | 10 <sup>-1</sup> -10 <sup>0</sup>           | Weak connection, but<br>sometimes needed for<br>delicate samples; $\rho_c$ can be<br>improved by oxygen<br>annealing; solvent carrier in<br>paint can damage thin films                                                   |
| Current contacts                                                                         |                                                                                                                                                           |                                             |                                                                                                                                                                                                                           |
| <i>In-situ</i> gold or silver<br>pad deposited on<br>superconductor,<br>no oxygen anneal | Descriptions of <i>in-situ</i> vs. <i>ex-situ</i><br>deposition techniques are given in<br>Sec. 8.4.2.                                                    | 10 <sup>-9</sup> -10 <sup>-7</sup>          | Produces the lowest $\rho_c$<br>In-situ contacts are mainly<br>amenable to HTS <i>film</i> (not<br>bulk) fabrication techniques<br>Gold is more expensive than<br>silver contact pads, but does<br>not tarnish as readily |

| <i>Ex-situ</i> gold or silver<br>pad deposited on<br>superconductor,<br>with oxygen<br>annealing | See Sec. 8.4.2 and "Fabrication" in Sec. 8.3.3.                                                                               | 10 <sup>-9</sup> -10 <sup>-6</sup> |                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Ex-situ</i> gold or silver<br>pad deposited on<br>superconductor,<br>no oxygen<br>annealing   | See Sec. 8.4.2 and "Fabrication" in Sec. 8.3.3.                                                                               | 10 <sup>-6</sup> -10 <sup>-2</sup> | Used for applications where<br>oxygen annealing is not<br>possible, or where very low<br>$\rho_c$ is not needed<br>$\rho_c$ depends on how well the<br>surface is cleaned |
| Indium-solder<br>connection to<br>silver or gold pad                                             | Make silver or gold pad thickness at<br>least 7 μm to 10 μm. See<br>"Soldering to noble-metal contact<br>pads" in Sec. 8.3.3. | 10 <sup>-1</sup> -10 <sup>-6</sup> | Used for connecting high-<br>current bus bars or wires to<br>the sample-contact pads<br>$\rho_c$ depends strongly on the<br>soldering technique used<br>(see text)        |
| <u>Failures</u>                                                                                  |                                                                                                                               |                                    |                                                                                                                                                                           |
| Copper pad deposited<br>on superconductor                                                        | Sputter deposited                                                                                                             | 10 <sup>-2</sup>                   | $ \rho_c $ no better than indium solder,<br>and a lot more complex to<br>fabricate.                                                                                       |
| Au–Cr pad deposited<br>on superconductor                                                         | Sputter deposited                                                                                                             | $10^{-1}$                          | Contact commonly used for semiconductors, but terrible for superconductors.                                                                                               |
| Pb–Sn solder                                                                                     |                                                                                                                               | no bond                            |                                                                                                                                                                           |

<sup>a</sup> The contact resistivity does not appreciably change with temperature below  $T_c$ , so the same approximate  $\rho_c$  values apply at liquid-helium and liquid-nitrogen temperature.

A8.3 Optimum oxygen-annealing conditions for silver and gold contacts to Y-, Bi-, and Tl-based high- $T_c$  superconductors. (Sec. 8.3.3 and 8.4.2)

Annealing times are about 30 min to 60 min (at full temperature) for contacts to bulk superconductors, 30 min or less for thin-film superconductors.

| Contacts to Bulk High-T <sub>c</sub><br>Superconductors | Annealing Temperature              |
|---------------------------------------------------------|------------------------------------|
| Ag/YBCO <sup>a</sup>                                    | 500 °C in $O_2$                    |
| Au/YBCO <sup>a</sup>                                    | 600 °C in O <sub>2</sub>           |
| Ag/BiPbSrCaCuO                                          | ~400 °C in $O_2$                   |
| Ag/TlCaBaCuO                                            | 500 °C in O <sub>2</sub>           |
|                                                         |                                    |
| Contacts to Film YBCO<br>Superconductors                | Annealing Temperature              |
| Ag(<1µm)/YBCO film <sup>b</sup>                         | 400 °C in O <sub>2</sub>           |
| Au(<1µm)/YBCO film °                                    | 450 °C to 500 °C in $\mathrm{O}_2$ |
|                                                         |                                    |

Annealing is carried out in oxygen at atmospheric pressure, flowing at a rate of about  $2 \times 10^{-6}$  m<sup>3</sup>/s (~0.3 scfh, standard cubic feet per hour) by using a furnace such as that shown in Fig. 8.9.

- For YBCO, the contacts were cooled in oxygen by ramping the furnace temperature down at a slow rate, ~2.5 °C/min for the bulk sintered superconductors used in these tests; rates for thin films should be kept below 50 °C/min to allow time for the crystal structure to take up oxygen as it cools and to minimize oxygen disorder. (Further information is given in B. H. Moeckly, D. K. Lathrop, and R. A. Buhrman, (1993), *Phys. Rev.* B47, 400–417.)
- For silver-contact pads on films, the silver pad will "ball up" at oxygen annealing temperatures higher than about 400 °C if the pad is thin (<1 μm); see Fig. 8.13. For thick silver-contact pads (>>1 μm), the optimum annealing temperature can be slightly higher (A. Roshko, R. H. Ono, J. Beall, J. A. Moreland, A. J. Nelson, and S. E. Asher. (1991), *IEEE Trans. Magn.* **27**, 1616–1618).
- <sup>a</sup> J. W. Ekin, T. M. Larson, N. F. Bergren, A. J. Nelson, A. B. Swartzlander, L. L. Kazmerski, A. J. Panson, and B. A. Blankenship (1988), *Appl. Phys Lett.* **52**, 1819–1821.
- <sup>b</sup> J. W. Ekin, C. C. Clickner, S. E. Russek, and S. C. Sanders (1995), *IEEE Trans. Appl. Supercond.* 5, 2400–2403.
- <sup>c</sup> Y. Xu, J. W. Ekin, C. C Clickner, and R. L. Fiske (1998), Adv. Cryog. Eng. (Mater.) 44, 381–388.

*A8.4 Bulk resistivity of common solders, contact-pad materials, and matrix materials (Sec. 8.5.2)* 

The bulk resistivity values listed below are useful for estimating the effective contact resistivity in conjunction with Eq. (8.5).

| Material                                                                     | ρ <sub>4κ</sub><br>[μΩ∙cm] | ρ <sub>77K</sub><br>[μΩ∙cm] | Р₂95к<br>[μΩ∙cm] |
|------------------------------------------------------------------------------|----------------------------|-----------------------------|------------------|
|                                                                              |                            |                             |                  |
| Solder (compositions in wt%)                                                 |                            |                             |                  |
| 52In-48Sn <sup>a</sup> (eutectic) ( $T_{melt}$ =118 °C)                      | SC                         |                             | 18.8             |
| 97In–3Ag <sup>a</sup> (eutectic) ( $T_{melt}$ =143 °C)                       | 0.02                       | 1.8                         | 9.7              |
| 90In-10Ag <sup>a</sup>                                                       | 0.03                       | 1.8                         | 9.1              |
| Indium <sup>a</sup> ( $T_{melt}$ =157 °C)                                    | 0.002                      | 1.6                         | 8.8              |
| 63Sn–37Pb <sup>a</sup> (standard eutectic soft-solder) ( $T_{melt}$ =183 °C) | SC                         | 3.0                         | 15               |
| 91Sn-9Zn <sup>a</sup> ( <i>T</i> <sub>melt</sub> =199 °C)                    | 0.07                       | 2.3                         | 12.2             |
|                                                                              |                            |                             |                  |
| Contact Pad Material                                                         |                            |                             |                  |
| Silver (pure: evaporated, sputtered, or plasma-sprayed)                      | variable                   | 0.27                        | 1.6              |
| Gold (pure: evaporated or sputtered)                                         | variable                   | 0.43                        | 2.2              |
|                                                                              |                            |                             |                  |
| Low-T <sub>c</sub> Superconductor Matrix Materials                           |                            |                             |                  |
| Copper                                                                       | variable                   | ~0.2                        | 1.7              |
| Bronze $(Cu = 13wt^{0}/Sn)$                                                  | (~0.017 typical)<br>~2     | ~?                          |                  |
|                                                                              | 2                          | 2                           |                  |
| High-T. Superconductor Matrix Materials                                      |                            |                             |                  |
| Silver                                                                       | variable                   | 0.27                        | 1.6              |
| Silver dispersion strengthened with 1at%Mn <sup>b</sup>                      | 2.2                        | 2.7                         | 4.0              |
| Silver dispersion strengthened with 2at%Mn <sup>b</sup>                      | ~4.1                       | ~4.6                        | ~6.0             |
|                                                                              |                            |                             |                  |

Additional properties of solders are tabulated in Appendix A3.7.

 $SC \equiv$  Superconducting (see Appendix A3.9).

<sup>a</sup> C. Clickner (1999), unpublished data, National Institute of Standards and Technology, Boulder, Colorado.

<sup>b</sup> M. Putti, C. Ferdeghini, G. Grasso, A. Manca, and W. Goldacker, (2000), *Physica C* 341-348, 2585-2586.

## A8.5a Argon ion milling rates of elements<sup>\*</sup> (Sec. 8.4.2)

Values of argon ion milling rates of elements are tabulated in nm/min, at a current density of  $1 \text{ mA/cm}^2$ , and incident argon ion energies of 200 eV and 500 eV.

Rates at other energies can be estimated from Fig. 8.11. An example is given in Sec. 8.4.2 under Cleaning etch.

| Element | 200 eV | 500 eV |
|---------|--------|--------|
|         | 100    | 220    |
| Ag      | 100    | 220    |
| Al      | 29     | /3     |
| Au      | 71     | 170    |
| Be      | 5.2    | 17     |
| С       | 1.3    | 4.4    |
| Со      | 26     | 55     |
| Cr      | 33     | 58     |
| Cu      | 53     | 110    |
| Dy      | 58.0   | 110    |
| Er      | —      | 98     |
| Fe      | 26     | 53     |
| Gd      | 55.0   | 110    |
| Ge      | 49     | 100    |
| Hf      | 31     | 66     |
| Ir      | 26     | 60     |
| Мо      | 24     | 54     |
| Nb      | 18     | 44     |
| Ni      | 31     | 66     |
| Os      | 20     | 51     |
| Pd      | 60     | 130    |
| Pt      | 39     | 88     |
| Re      | 23     | 52     |
| Rh      | 31     | 74     |
| Ru      | 24     | 61     |
| Si      | 16     | 38     |
| Sm      | 51.0   | 110    |
| Sn      | 85.0   | 180    |
| Та      | 20     | 42     |

| Element | 200 eV<br>[nm/mm] | 500 eV<br>[nm/min] |
|---------|-------------------|--------------------|
| Th      | 41                | 82                 |
| Ti      | 16                | 38                 |
| U       | 34                | 74                 |
| V       | 17                | 37                 |
| W       | 18                | 38                 |
| Y       | 45                | 96                 |
| Zr      | 27                | 62                 |

\* From a compilation by H. R. Kaufman and R. S. Robinson (1987), *Operation of Broad-Beam Sources*. Commonwealth Scientific Corp., Alexandria, Virginia, from data by G. K. Wehner et al. (1962), General Mills Report 2309, General Mills Electronic Division, Minneapolis, Minnesota, published by P. R. Puckett, S. L. Michel, and W. E. Hughes, (1991), p. 760 in *Thin Film Processes II*, eds. J. O. Vossen and W. Kern, Academic Press, Boston.

### A8.5b Argon ion milling rates of compounds<sup>\*</sup> (Sec. 8.4.2)

Values of argon ion milling rates of compounds are tabulated in nm/min, at a current density of  $1 \text{ mA/cm}^2$ , and incident argon ion energies of 200 eV and 500 eV.

Rates at other energies can be estimated from Fig. 8.11. An example is given in Sec. 8.4.2 under Cleaning etch.

| Compound                                                     | 200 eV<br>[nm/min] | 500 eV<br>[nm/min] |
|--------------------------------------------------------------|--------------------|--------------------|
| CdS <sup>a</sup>                                             | 110                | 230                |
| GaAs (110) <sup>a</sup>                                      | 78                 | 160                |
| GaP (111) <sup>a</sup>                                       | 69                 | 160                |
| GaSb (111) <sup>b</sup>                                      | 90                 | 190                |
| InSb <sup>a</sup>                                            | 76                 | 150                |
| LiNbO <sub>3</sub> (Y-cut) <sup>c</sup>                      | —                  | 40                 |
| MgO <sup>e</sup>                                             | —                  | 16                 |
| Mo <sub>2</sub> C <sup>a</sup>                               | —                  | 29                 |
| PbTe <sup>a</sup>                                            | 160                | 380                |
| SiC (0001) <sup>a</sup>                                      | —                  | 35                 |
| SiO <sub>2</sub> <sup>c</sup>                                | —                  | 40                 |
| YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7</sub> <sup>e</sup> |                    | 45                 |

\* From a compilation by H. R. Kaufman and R. S. Robinson (1987), *Operation of Broad-Beam Sources*. Commonwealth Scientific Corp., Alexandria, Virginia, published by P. R. Puckett, S. L. Michel, and W. E. Hughes (1991), p. 760 in *Thin Film Processes II*, eds. J. O. Vossen and W. Kern, Academic Press, Boston; and from J. W. Ekin (1992), unpublished data, National Institute of Standards and Technology, Boulder, Colorado.

- <sup>a</sup> J. Comas, J. and C. B. Cooper (1966), J. Appl. Phys. 37, 2820–2822.
- <sup>b</sup> S. P. Wolsky, D. Shooter, and E. J. Zdanuk (1962), pp. 164–168 in *Transactions of the 9th National Vacuum Symposium*, Pergamon Press, New York
- <sup>c</sup> H. L. Garvin (1971), Bull. Am. Phys. Soc., Ser. II 16, 836.
- <sup>d</sup> J. L. Vossen and E. B. Davidson (1972), J. Electrochem. Soc. 119, 1708–1714.
- <sup>e</sup> J. W. Ekin (1990), unpublished data, National Institute of Standards and Technology, Boulder, Colorado.

#### A10. Critical-current analysis parameters (ref. Chapter 10)

## A10.1 Effective critical temperature $T_c^*(B)$ (Sec. 10.4.4)

Values of the effective critical temperature  $T_c^*$  as a function of magnetic field *B* are tabulated below. They were determined by linearly extrapolating the  $I_c(T,B)$  curves of Figs. 10.17, 10.18, 10.19, and 10.21 to zero current.

The value of  $T_c^*(B)$  at a given magnetic field *B* is useful when the critical current  $I_c(T_1)$  is known at one temperature  $T_1$  and we wish to determine its approximate value  $I_c(T)$  at an arbitrary temperature *T*. For this purpose, a linear approximation of the  $I_c(T)$  characteristic works fairly well for a number of conductors [Eq. (10.14) in Sec. 10.4.4]:

$$I_{\rm c}(T)/I_{\rm c}(T_1) = [T_{\rm c}^* - T]/[T_{\rm c}^* - T_1]$$

This linear relationship between the critical current and temperature usually breaks down at high temperatures (within about 10 % of  $T_c^*$ ) because of inhomogeneities in the superconductor, but the relationship is useful over most of the practical temperature range leading up to  $T_c^*$  (ref. Figs. 10.17, 10.18, 10.19, and 10.21).

For materials that cannot be modeled with a linear relationship, the temperaturetransformation method described in Sec. 10.6.3 is much more general in nature and quite accurate for nearby transformations. A summary of the method is also given in Appendix A10.2b below under the subsection entitled Temperature dependence of the critical current.

| Nb-Ti <sup>a</sup>                |                                                                             |      |                                        |                                       |                          |
|-----------------------------------|-----------------------------------------------------------------------------|------|----------------------------------------|---------------------------------------|--------------------------|
| Magnetic<br>Field <i>B</i><br>[T] | First number valid near $T_{c}^*$ ; the second for the range 4.0 K to 4.5 K |      | Nb <sub>3</sub> Sn <sup>b</sup><br>[K] | V <sub>3</sub> Ga <sup>d</sup><br>[K] | YBCO <sup>e</sup><br>[K] |
| 0                                 | 9.2                                                                         | 12.4 |                                        |                                       | 87                       |
| 0.3                               | 9.0                                                                         | 11.0 |                                        |                                       |                          |
| 1                                 | 8.66                                                                        | 9.78 |                                        |                                       |                          |
| 2                                 | 8.25                                                                        | 9.31 | 15.0                                   |                                       |                          |
| 3                                 | 7.89                                                                        | 8.77 |                                        |                                       |                          |
| 4                                 | 7.40                                                                        | 8.20 | 13.7                                   | 11.8                                  |                          |
| 5                                 | 7.07                                                                        | 7.54 | 13.1                                   | 11.4                                  |                          |
| 6                                 | 6.52                                                                        | 6.85 | 12.6                                   |                                       |                          |
| 7                                 | 6.14                                                                        | 6.16 |                                        |                                       |                          |
| 8                                 | 5.53                                                                        | 5.53 | 11.5                                   | 10.8                                  |                          |
| 9                                 | 5.16                                                                        | 5.01 |                                        |                                       |                          |
| 10                                | 4.63                                                                        | 4.63 | 10.4                                   | 10.3                                  |                          |
| 12                                |                                                                             |      | 9.5                                    |                                       |                          |

Values of  $T_c^*(B)$  at Various Magnetic Fields for Selected Superconductors

<sup>a</sup> For Nb–Ti, the first value of  $T_c^*$  is for use over the high-temperature regime where *T* approaches  $T_c^*$ . It is extrapolated from the slope of the data where  $I_c$  approaches zero. The second value of  $T_c^*$  is for use over the liquid-helium temperature range. It is extrapolated from data only between 4.0 K and 4.5 K. Note that because of curvature in the  $I_c$  vs. *T* plot *at low magnetic fields*, the second value of  $T_c^*$  (for use in the liquidhelium temperature range) can be significantly greater than the first (nominal) value. Data from L. F. Goodrich and T. C. Stauffer (2004), *Adv. in Cryog. Eng. (Mater.)* **50B**, 338–345 (the source data are plotted in Fig. 10.17 of this textbook).

<sup>b</sup> Extrapolated from data by L. F. Goodrich, L. T. Medina, and T. C. Stauffer (1998), *Adv. Cryog. Eng. (Mater.)* **44**, 873–880 (straight-line extrapolations are shown in Fig. 10.18 of this textbook).

<sup>c</sup> Extrapolated from data by S. A. Keys, N. Koizumi, and D. P. Hampshire (2002), Supercond. Sci. Technol. 15, 991-1010.

<sup>d</sup> Extrapolated from data by Y. Iwasa and B. Montgomery (1975), pp. 387–487 in *Applied Superconductivity*, Vol. **2**, ed. V. L. Newhouse, Academic Press, (straight-line extrapolations are shown in Fig. 10.19).

<sup>e</sup> Extrapolated from data by R. Feenstra and D. T. Verebelyi (1999), unpublished, Oak Ridge National Laboratory, Tennessee (the source data are plotted in Fig. 10.21).

# A10.2a Scaling parameters for calculating the magnetic-field, strain, and temperature dependence of the critical current of low- $T_c$ superconductors (Secs. 10.3, 10.5, 10.6, and 10.7)

The scaling-parameter values listed below can be used for technological purposes to analytically model and transform the critical current of multifilamentary low- $T_c$  superconductors as a function of magnetic field, strain, and temperature. These parameters are used in conjunction with the scaling relations summarized in Appendix A10.2b. The scaling relations are listed in Appendix A10.2b in order of increasing complexity, starting with the simplest scaling laws (appropriate for fixed strain or temperature) and working to the most complete (the unified scaling law suitable for variable magnetic field, temperature, and strain). The relations are mutually consistent and build on each other, so it is worth utilizing the simplest relation for the task at hand.

Values of the scaling parameters tabulated here were determined from data correlations for specific classes of superconductors. They show good consistency ( $\pm$  10 % to 20 %) within each class, where sufficient data exist for meaningful statistical correlations to be made (e.g., binary Nb<sub>3</sub>Sn, V<sub>3</sub>Ga, and, to some extent, Nb<sub>3</sub>Al; see, for example, Figs. 10.30 and 10.31). These values will no doubt be refined and updated as more data are obtained for given classes of superconductors, such as specific types of ternary Nb<sub>3</sub>Sn. To that end, these standard values and the accompanying scaling relations provide a basic *framework* for systematizing additional data as they become available.

This ongoing task is aided by the *separability* of this parameter set into magnetic field, strain, and temperature parameters. Defined in this way, the parameter values show good consistency and are easily updated. A significant advantage of the separable parameter set used here is the independence of strain and temperature parameters, which enables their values to be determined from separate strain and temperature experiments. This offers flexibility and considerable time savings. Also, since the parameters are not commingled, the entire set does not have to be redetermined every time additional new strain or temperature data become available for a particular conductor. (Further information on the practical use of this parameter set is given in Sec. 10.7.1 under the subheading Separable form, and in Sec. 10.7.4.)

If strain and/or temperature data are available for a specific conductor, scaling parameters tailored to that conductor can be determined with the robust methods given in Sec. 10.7.4 and substituted for the standard parameters given in the table below entitled Scaling Parameters. In this case, the values below are needed only to fill in missing gaps in the scaling-parameter set (see Sec. 10.7.4 for more details). These standard values also have predictive utility in the initial design stage of superconducting magnets.

## Limitations:

- (1) These parameter values are valid specifically for conductors with *solid filaments* (not tubular filaments, or bundles of filaments that fuse into a tubular structure after reaction).
- (2) They also depend on *additive content* and *fabrication process* (e.g., bronze process vs. internal tin). The tabulated additive concentrations are not the starting weight percent of additive in the conductor before reaction; rather, they are the atomic percent actually measured in the Nb<sub>3</sub>Sn reaction layer *after* fabrication, which can vary depending on the fabrication process. As more data become available, it is expected that consistent correlations of parameter values will be obtained for additional classes of conductors.
- (3) The tabulated scaling parameters are for technological use over the *moderate intrinsic-strain* range (-0.5 % <  $\varepsilon_0$  < +0.4 %), which is the range where most magnets are designed. For high compressive strains ( $\varepsilon_0$  < -0.5 %), four more parameters are needed, as described in Secs. 10.5.6 and 10.7.3 and summarized below in Eqs. (A10.9)–(A10.11) and (A10.30)– (A10.32); these high-compression parameters may not be so consistent.

## Examples:

Practical examples for utilizing these parameters with the scaling relations are given in the following sections:

| • | Magnetic-field modeling                           | Sec. 10.3.3 |
|---|---------------------------------------------------|-------------|
| • | Strain and magnetic-field modeling                | Sec. 10.5.7 |
| • | Simplified strain transformations                 | Sec. 10.6.2 |
| • | Simplified strain-and-temperature transformations | Sec. 10.7.5 |

## Temperature-scaling parameters

Values of the temperature-scaling parameters {for use with the temperature scaling law [Sec. 10.6.3 and Eq. (A10.12) below] and the unified strain-and-temperature scaling law [Sec. 10.7 and Eq. (A10.18)]} are available mainly for Nb<sub>3</sub>Sn and not listed in the table below. The (dimensionless) temperature-scaling parameters  $\nu$  and w are nearly universal constants for the technological Nb<sub>3</sub>Sn conductors evaluated thus far, including binary and ternary Nb<sub>3</sub>Sn at both moderate and high intrinsic strains:

| v = 1.5 | for Nb <sub>3</sub> Sn, as shown by Figs. 10.37 and 10.38 |
|---------|-----------------------------------------------------------|
| w = 3.0 | for Nb <sub>3</sub> Sn, as shown by Fig. 10.36.           |

Although not so nearly universal, the (dimensionless) temperature exponent  $\eta$  and the critical temperature at zero intrinsic strain  $T_c^*(0)$  can be effectively approximated for nearby temperature transformations by

| $\eta\approx 2.5$                               | for Nb <sub>3</sub> Sn  |
|-------------------------------------------------|-------------------------|
| $T_{\rm c}^*(\varepsilon_0=0)\approx 17~{ m K}$ | for Nb <sub>3</sub> Sn. |

With additional temperature correlations, values of these latter two parameters may become more standardized for individual classes of superconductors.

For Nb<sub>3</sub>Sn, the scaling parameter  $B_{c2}^{*}(T=0,\varepsilon_{0}=0)$  can be estimated by using Eq. (10.57) with the approximate values of  $B_{c2}^{*}(4.2\text{K},\varepsilon_{0}=0)$  given in the table below; that is,

$$B_{c2}^{*}(0,0) \approx B_{c2}^{*}(4.2K,0) [1 - (4.2K/17.5K)^{\nu}]^{-1} \approx 1.14 B_{c2}^{*}(4.2K,0).$$

## Scaling Parameters [dimensionless, except for $B_{c2}^*$ ]:

|                                    | Crystal<br>Structure | Magnetic-Field Dependence of $I_c$ |      |                                                  | Strain Dependence of $I_c$ <sup>‡</sup> * |                                                    |             |      |  |  |  |
|------------------------------------|----------------------|------------------------------------|------|--------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------|------|--|--|--|
| Superconductor                     |                      | p†                                 | q†   | $B_{c2}^{*}$<br>at 4.2K, $\epsilon_{0}=0$<br>[T] | $(-a^{-}(\varepsilon_{0}<0))$             | $-0.5\% < \varepsilon_0 < a^+ (\varepsilon_0 > 0)$ | +0.4%)<br>S | Ref. |  |  |  |
| Strain-dependent Superconductors   |                      |                                    |      |                                                  |                                           |                                                    |             |      |  |  |  |
| Nb <sub>3</sub> Al (RHQT)          | A15                  | 0.5                                | ~2.0 | 26                                               | 370                                       |                                                    | ~2.5        | а    |  |  |  |
| V <sub>3</sub> Ga                  | دد                   | 0.4                                | 1.0  | 21                                               | 450                                       | 650                                                | 1.4         | b    |  |  |  |
| Nb <sub>3</sub> Ge                 | "                    | 0.6                                | 1.9  | 25                                               | 500                                       |                                                    | ~2          | с    |  |  |  |
| Nb <sub>3</sub> Sn*                | "                    | 0.5                                | 2.0  | 21                                               | 900                                       | 1250                                               | 1           | d    |  |  |  |
| Nb <sub>3</sub> Sn +0.6at%Ti*      | "                    | 0.6                                | 1.7  | 23                                               | 900                                       | 1250                                               | 1.1         | e    |  |  |  |
| Nb <sub>3</sub> Sn +1.85at%Ti*     | "                    | 0.5                                | 1.5  | 25                                               | 1100                                      | 1450                                               | 1.2         | e,f  |  |  |  |
| Nb <sub>3</sub> Sn +0.6at%Ta*      | "                    | 0.5                                | 1.4  | 24                                               | 900                                       | 1250                                               | 1.0         | e    |  |  |  |
| Nb <sub>3</sub> Sn +2.2at%Ta*      | "                    | 0.5                                | 1.4  | 24                                               | 1350                                      | 1800                                               | ~1          | e,g  |  |  |  |
| V <sub>3</sub> Si                  | دد                   | 0.5                                | 1.7  | 16                                               | 3500                                      |                                                    | ~1          | а    |  |  |  |
| PbMo <sub>6</sub> S <sub>8</sub>   | Chevrel              | 0.3                                | 6    | 63                                               | —                                         | 1900                                               | ~2          | h    |  |  |  |
| Strain-independent Superconductors |                      |                                    |      |                                                  |                                           |                                                    |             |      |  |  |  |
| NbN                                | B1                   | 1.2                                | 2.4  | 24                                               | 0                                         | 0                                                  |             | i    |  |  |  |
| NbCN                               | "                    | 1.4                                | 2.5  | 17                                               | _                                         | 0                                                  | _           | j    |  |  |  |
| V <sub>2</sub> (Hf,Zr)             | C15                  | 0.7                                | 0.6  | 20                                               |                                           | 0                                                  |             | k    |  |  |  |

<sup> $\dagger$ </sup> Values of p and q are effectively independent of temperature and strain (Sec. 10.7.1).

<sup>‡</sup> The strain-parameter values listed are valid only for the moderate intrinsic-strain range ( $-0.5\% < \varepsilon_0 < +0.4\%$ ). To model *I*<sub>c</sub> at high-compressive strains ( $\varepsilon_0 < -0.5\%$ ), additional parameters are needed, as described in Sec. 10.5.6 for the strain-scaling law and Sec. 10.7.3 for the unified strain-and-temperature scaling law.

<sup>\*</sup> The strain parameters  $a^-$ ,  $a^+$ , and *s* are applicable to *solid-filament* (not tubular-filament) superconductors. The strain-sensitivity parameter *a* is defined by Eq. (10.21) of Sec. 10.5.5 for a power-law exponent u = 1.7. [This value of *u* is found to hold experimentally for all the A15 and Chevrel-phase superconductors listed in the above table (see Sec. 10.5.5). It is also given by the model of Markiewicz with no adjustable parameters

(see Fig. 10.32).] The values of  $a^-$  and  $a^+$  are dependent on the type and amount of *additives*, as shown for the various ternary Nb<sub>3</sub>Sn materials listed in the table. Atomic percentages given are those measured in the Nb<sub>3</sub>Sn layer *after* reaction. For example, 2.2at%Ta in the reaction layer was obtained with a starting filament alloy of Nb-7.5wt%Ta, but it can vary depending on conductor processing.

- <sup>a</sup> Banno, N., Uglietti, D., Seeber, B., Takeuchi, T., and Flukiger, R. (2005), *Supercond. Sci. and Technol.* **18**, S338 S343. RHQT ≡ rapid heating, quenching and transformation process.
- <sup>b</sup> J. W. Ekin (1981), *IEEE Trans. Magn.* MAG-17, 658–661; D. G. Howe, T. L. Francavilla and D. U. Gubser (1977), *IEEE Trans. Magn.* MAG-13, 815–817; Furukawa Corp. (1984), personal communication.
- <sup>c</sup> J. W. Ekin (1981), IEEE Trans. Magn. MAG-17, 658-661.
- <sup>d</sup> J. W. Ekin (1980), Cryogenics 20, 611-624.
- <sup>e</sup> J. W. Ekin (1985), pp. 267–271 in *Proc. International Symposium of Flux Pinning and Electromagnetic Properties of Superconductors*, eds. K. Yamafuji and F. Irie, Matsukuma Press, Japan..
- <sup>f</sup> Sample from G. Ozeryansky (1984), Intermagnetics General Corp.
- <sup>g</sup> Sample from W. McDonald (1984), Teledyne Wah-Chang Corp.
- <sup>h</sup> J. W. Ekin, T. Yamashita, and K. Hamasaki (1985), *IEEE Trans. Magn.*, MAG-21, 474-477.
- <sup>i</sup> J. W. Ekin, J. R. Gavaler, and J. Greggi (1982), Appl. Phys. Lett. 41, 996–998.
- <sup>j</sup> J. W. Ekin, unpublished data, National Institute of Standards and Technology, Boulder, Colorado; sample from M. Dietrich (1984), Kernforschungszentrum Karlsruhe, Karlsruhe, Germany.
- <sup>k</sup> H. Wada, H., K. Inoue, K. Tachikawa, and J. W. Ekin (1982), *Appl. Phys. Lett.* 40, 844–846.

The relations summarized here are based on consistent scaling data of the critical current as a function of magnetic field, strain, and temperature. Used in conjunction with the scaling parameters tabulated in Appendix A10.2a, they provide analytic expressions for modeling, interpolating, and predicting the critical current of most practical low- $T_c$  superconductors as a function of magnetic field, strain, and temperature for technological applications. Further discussion and examples of the application of these scaling relations are given in the main text sections referred to in parentheses with each summary heading. The scaling relations are mutually consistent and listed progressively from the simplest to the most general. Again, use the simplest relation for the task at hand.

Because the parameter set used here is separable into temperature and strain parameters (see Sec. 10.7.1), the relations, when assembled, become the general unified scaling law described at the end of the list below. The separable nature of this parameter set also has the benefit that limited numbers of scaling parameters determined from early limited data (i.e., an incomplete set of values) are not a wasted effort. Rather, they build on each other and generally do not need to be refit later as more data become available. As refined parameter values are measured for an individual conductor, they can be substituted for the "standard" values listed in the Scaling Parameters table in Appendix 10.2a. This building process also parallels the way data are usually obtained for a given conductor (Sec. 10.7.4).

## Magnetic-field interpolations (Secs. 10.3.2 and 10.3.3)

The dependence of the critical current  $I_c$  on magnetic field *B* is given by [ref. Eqs. (10.9)–(10.11)]

$$I_{c}(B) = k B^{-1} [B/B_{c2}^{*}]^{p} [1 - (B/B_{c2}^{*})]^{q},$$
(A10.1)

where k is a proportionality constant and  $B_{c2}^*$  is the effective upper critical field. This is an empirical expression based on the general form of most pinning theories. Typical values of  $B_{c2}^*$ and the exponential constants p and q for most of the common high-field low- $T_c$  superconductors are given in columns 3 to 5 of the Scaling Parameters table in A10.2a. Values of the parameters p and q tailored to a specific conductor can be obtained from a single  $I_c(B)$  measurement at a fixed temperature and strain [preferably obtained at a temperature  $T \ll T_c^*(0)$  to minimize the effects of  $B_{c2}$  inhomogeneity (Sec. 10.3.4), and at a strain not too far from  $\varepsilon_0 \approx 0$  to avoid  $B_{c2}$ inhomogeneity effects as well as filament breakage at high tensile strains (Sec. 10.5.1)]. Strain dependence of the critical current (valid for fixed temperature T <<  $T_c$ ; e.g., at 4.2 K in Nb<sub>3</sub>Sn) (Secs. 10.5.4–10.5.7)

The magnetic-field and strain dependence of the critical current of most low- $T_c$  superconductors can be modeled at low temperatures with the strain scaling law [Eq. (10.18)]. The simplest parameterization of this law applies to the moderate intrinsic-strain range (-0.5 % <  $\varepsilon_0 < +0.4$  %, assuming  $\varepsilon_{irr} \ge +0.4$  %), which is also the strain range where most (but not all) magnets are designed mainly because the critical currents are highest in this regime. [Extended-strain parameters covering the high compressive strain range ( $\varepsilon_0 < -0.5$  %) are given in Secs. 10.5.6 and 10.7.3, and are summarized below in Eqs. (A10.9)–(A10.11) and (A10.30–A10.32).] This empirical scaling law is based on extensive correlations of strain data at 4.2 K in low- $T_c$  superconductors, which show strain invariance of the shape of the pinning-force vs. magnetic-field characteristic (Sec. 10.5.4).

For the moderate strain range, the simplest and most consistent parameterization of the strain scaling law for technological purposes gives the following expression for the magnetic-field and strain dependence of the critical current  $I_c(B,\varepsilon_0)$  [ref. Eqs. (10.20)–(10.22)]

$$I_{c}(B,\varepsilon_{0}) = g(0) \left[1 - a \left|\varepsilon_{0}\right|^{1.7}\right]^{s} B^{-1} \left[B/B_{c2}^{*}(\varepsilon_{0})\right]^{p} \left\{1 - \left[B/B_{c2}^{*}(\varepsilon_{0})\right]\right\}^{q},$$
(A10.2)

valid for fixed temperature  $T \ll T_c$  (e.g., at 4.2 K in Nb<sub>3</sub>Sn). Here, g(0) is a proportionality constant and the scaling parameters p, q,  $a^-$  (for  $\varepsilon_0 < 0$ ),  $a^+$  (for  $\varepsilon_0 > 0$ ), and s are tabulated in columns 3, 4, 6, 7, and 8, respectively, of the Scaling Parameters table in A10.2a. (The strainsensitivity parameters  $a^-$  and  $a^+$  are described more fully below.) The scaling parameter  $B_{c2}^*(\varepsilon_0)$  is the strain-dependent effective upper critical field; values at 4.2 K are tabulated in column 5 of Table A10.2a.

The variable  $\varepsilon_0$  is the *intrinsic* strain, defined as

$$\varepsilon_0 \equiv \varepsilon - \varepsilon_m, \tag{A10.3}$$

where  $\varepsilon$  is the axial strain applied to the superconductor and  $\varepsilon_m$  is the axial strain at which  $I_c$  is maximum (e.g., Fig. 10.26). Negative values of  $\varepsilon_0$  represent the compressive intrinsic strain in the superconductor, and positive values represent tensile intrinsic strain (Sec. 10.5.1). The upper strain limit for the validity of this strain scaling law is given by the irreversible strain limit  $\varepsilon_{0irr}$ , where the conductor is permanently damaged by axial strain. A typical value of  $\varepsilon_{0irr}$  in Nb<sub>3</sub>Sn is about  $\varepsilon_{0irr} \approx +0.4$  %, but it can be more or less than this amount (Sec. 10.5.1). (Lower values of  $\varepsilon_{0irr}$  usually occur in conductors with larger filament diameters or fused filament clusters, whereas higher values of  $\varepsilon_{0irr}$  usually occur in conductors with small filament diameters, such as Nb<sub>3</sub>Al or fine-filament Nb<sub>3</sub>Sn conductors.)

Over the moderate intrinsic strain range ( $-0.5 \% < \epsilon_0 < \epsilon_{0irr}$ ), the effective upper critical field is well represented by a power law

$$\frac{B_{c2}^{*}(\varepsilon_{0})}{B_{c2}^{*}(0)} = 1 - a \left| \varepsilon_{0} \right|^{1.7}, \tag{A10.4}$$

where  $B_{c2}^{*}(\varepsilon_{0}=0)$  is evaluated at the designated temperature *T*. This is an empirical parameterization that accurately and consistently represents the fundamental results of anharmonic strain theory over the moderate strain range (Sec. 10.5.5). Values of  $B_{c2}^{*}(\varepsilon_{0}=0)$  at 4.2 K are listed in column 5 of Table A10.2a. For Nb<sub>3</sub>Sn, values of  $B_{c2}^{*}(\varepsilon_{0}=0)$  at other temperatures can be estimated from the 4.2 K values by using Eq. (10.57) [i.e., Eq. (A10.19) below] and the temperature-scaling parameter values listed just before Table A10.2a.

The parameter *a* in Eq. (A10.4) is the *intrinsic strain sensitivity* and is a simple quantitative index of the sensitivity of a given class of superconductors to axial strain. For compressive strains ( $\varepsilon_0 < 0$ ), the strain sensitivity is denoted as  $a^-$ , with values listed in column 6 of Table A10.2a. For tensile strains ( $\varepsilon_0 > 0$ ), the strain sensitivity is denoted  $a^+$ , with somewhat greater values listed in column 7 of Table A10.2a. (Sec. 10.5.5 gives a discussion of the fundamental origin of this difference.) The compressive parameter  $a^-$  (column 6) is usually the more important parameter from a technological standpoint, since it characterizes the strain sensitivity of a conductor over the moderate compressive strain range where most magnets are designed ( $-0.5 \% < \varepsilon_0 < 0 \%$ ). Again, the tensile parameter  $a^+$  is valid only up to the irreversible strain limit  $\varepsilon_{0irr}$  where damage occurs in the superconducting filaments.

#### Limitations:

- (1) It bears reiterating that the strain-scaling parameters  $a^-$ ,  $a^+$ , and *s* in the Table A10.2a apply to the most common types of conductors, *solid-filament* multifilamentary wires, not to other filament shapes such as wires with tubular filaments or fused tubular clusters, where the strain sensitivity is enhanced by three-dimensional strain effects.
- (2) Occasionally, particular conductors need to be characterized by unsymmetrical values of the parameter *s* in Eq. (A10.2) [ $s^-$  for compressive intrinsic strain ( $\varepsilon_0 < 0$ ) and  $s^+$  for the tensile side ( $\varepsilon_0 > 0$ )]. Further data correlations are needed to see if such unsymmetrical values of *s* are "standard" for certain types of superconductors.
- (3) For high-compressive strains ( $\epsilon_0 < -0.5$  %), a more general relationship must be used, given by Eqs. (10.23) and (10.24) in Sec. 10.5.6. This entails additional parameters that appear to be extrinsic in nature and, therefore, must be fitted on a conductor-by-conductor basis (Sec. 10.5.6).

#### <u>Strain transformation method</u> (Sec. 10.6.1)

The strain *transformation* method is a powerful technique for utilizing the strain scaling law to transform a single  $I_c(B,\varepsilon_{01})$  curve obtained at a strain  $\varepsilon_{01}$  to a curve  $I_c(B',\varepsilon_{02})$  valid at a

different strain  $\varepsilon_{02}$ , without the need to know the parameters p, q,  $B_{c2}^{*}(0)$ , or g(0) in Eq. (A10.2). The derivation of this transformation method is given in Sec. (10.6.1).

The transformation is independent of the parameterization scheme; it is illustrated here with the separable parameter set employed above because of its practical utility, but it can be used with any of the alternative parameterization schemes that have been proposed for the prefactor term  $g(\varepsilon)$  in the strain scaling law [Eq. (10.18)]. Again, the strain-transformation method is limited to transformations carried out at fixed temperatures  $T \ll T_c$ , such as 4.2 K in Nb<sub>3</sub>Sn. (For combined strain and temperature transformations, see the unified-scaling transformation method summarized in the last subsection of this appendix.)

The application of the transformation consists of two steps. First, to obtain  $I_c(B', \varepsilon_{02})$ when  $\varepsilon_{01}$  and  $\varepsilon_{02}$  fall within the moderate strain range ( $-0.5 \% < \varepsilon_0 < \varepsilon_{0irr}$ ), multiply the magnetic field data of the  $I_c(B, \varepsilon_{01})$  data set by the constant  $\beta$  to obtain a new set of magnetic-field values B'[ref. Eq. (10.32)]

$$B' = \beta B. \tag{A10.5}$$

Second, multiply the critical current data of the  $I_c(B,\varepsilon_{01})$  set by  $\beta^{s-1}$  to obtain new critical current values corresponding to the new magnetic-field data; that is, [ref. Eq. (10.33)]

$$I_{c}(B',\varepsilon_{02}) = \beta^{s-1} I_{c}(B,\varepsilon_{01}).$$
(A10.6)

The constant  $\beta$  in these two equations is given by [ref. Eq. (10.34)]

$$\beta = \frac{B_{c2}^{*}(\varepsilon_{02})}{B_{c2}^{*}(\varepsilon_{01})} = \frac{1 - a|\varepsilon_{02}|^{1.7}}{1 - a|\varepsilon_{01}|^{1.7}}.$$
(A10.7)

(For an immediate clarification of this simple data-transformation procedure, please refer to the example given in Table 10.3 in Sec. 10.6.2.) Thus, all that's needed to carry out the transformation are the scaling parameters *a* and *s*. Again, values of *s* are listed in column 8 of Table A10.2a, and values of the strain-sensitivity parameter *a* are given in columns 6 and 7 of Table A10.2a ( $a^-$  for  $\varepsilon_0 < 0$ , and  $a^+$  for  $\varepsilon_0 > 0$ ).

For nearby transformations, this method is quite accurate. For example, when transforming from  $\varepsilon_0 = -0.3$  % to 0 % in Nb<sub>3</sub>Sn conductors, an error of 10 % in the value of *a* results in an error of less than 0.5 % in the transformed *B* values and effectively no error in the *I*<sub>c</sub> values.

*High compressive strains*: For transformations involving high-compressive strains ( $\epsilon_0 < -0.5$  %), the magnetic-field transformation remains that given by Eq. (A10.5), but we use the more general transformation for the critical current [Eq. (10.30)]

$$I_{c}(B',\varepsilon_{02}) = \beta^{-1} \frac{g(\varepsilon_{02})}{g(\varepsilon_{01})} I_{c}(B,\varepsilon_{1}), \qquad (A10.8)$$

where

$$\beta = \frac{B_{c2}^{*}(\varepsilon_{02})}{B_{c2}^{*}(\varepsilon_{01})}.$$

The functions  $B_{c2}^{*}(\varepsilon_{0})$  and  $g(\varepsilon_{0})$  can be parameterized at high compressive strains by

$$\frac{B_{c2}^{*}(\varepsilon_{0})}{B_{c2}^{*}(0)} = 1 - a \left| \varepsilon_{0} \right|^{1.7} + a_{1} \left| \varepsilon_{0} - \varepsilon_{0}' \right|^{a_{2}} I(\varepsilon_{0} < \varepsilon_{0}')$$
(A10.9)

$$\frac{g(\varepsilon_0)}{g(0)} = \left[1 - a \left| \varepsilon_0 \right|^{1.7} \right]^s + g_1 \left| \varepsilon_0 - 0.005 \right|^{g_2} I(\varepsilon_0 < \varepsilon_0')$$
(A10.10)

with 
$$I(\varepsilon_0 < -0.005) \equiv \begin{cases} 1 & \text{if } \varepsilon_0 < \varepsilon_0' \\ 0 & \text{if } \varepsilon_0 > \varepsilon_0' \end{cases}$$
 (A10.11)

Here,  $I(\varepsilon_0 < \varepsilon_0')$  is an *indicator function*, which is zero except at high-compressive strains:  $\varepsilon_0 < \varepsilon_0'$ , with  $\varepsilon_0' \approx -0.005$  for Nb<sub>3</sub>Sn. Unlike transformations carried out over the intrinsic peak strain range, the extra parameters characterizing the extended strain range ( $a_1, a_2, g_1, \text{ and } g_2$ ) are probably extrinsic in nature and need to be determined on a conductor-to-conductor basis. The advantage of the parameterization given by Eqs. (A10.9)–A(10.10) is that the scaling parameters *a* and *s* characterizing the intrinsic peak region remain consistent and unaffected by those characterizing the extrinsic high compressive regime.

#### Temperature dependence of the critical current (valid for fixed strain) (Sec. 10.6.3)

The magnetic-field and temperature dependence of the critical current of most low- $T_c$  superconductors can be modeled (at a fixed strain) with the temperature scaling law [Eq. (10.36)]. This empirical relation is based on correlations of temperature data at fixed strain, which show temperature invariance of the shape of the pinning force vs. magnetic-field characteristic (Sec. 10.6.3).

The simplest parameterization of the temperature scaling law for technological purposes is given by [ref. Eqs. (10.38)–(10.43)]

$$I_{c}(B,T) = h(0) [(1-t^{\nu})]^{\eta} B^{-1} [B/B_{c2}^{*}(t)]^{p} \{1-[B/B_{c2}^{*}(t)]\}^{q},$$
(A10.12)

valid for fixed strain. Here, h(0) is a proportionality constant, p and q are the scaling constants given in columns 3 and 4 of Table A10.2a, and v and  $\eta$  are temperature-scaling constants listed for Nb<sub>3</sub>Sn just before Table A10.2a.

The variable *t* is the *reduced* temperature, defined as

$$t = T/T_{\rm c}^*(\varepsilon_0), \tag{A10.13}$$

where *T* is the temperature of the superconductor and  $T_c^*(\varepsilon_0)$  is its effective critical temperature (at a fixed strain  $\varepsilon_0$ ). When  $t \ll 1$  and  $|\varepsilon_0| \equiv |\varepsilon - \varepsilon_m| \ll 0.4\%$ , the better known *strain-free* value of  $T_c^*$  at  $\varepsilon_0 = 0$  can be used (since the strain dependence of  $T_c^*$  is relatively gradual, as described for the unified-scaling relation below). For Nb<sub>3</sub>Sn, the strain-free  $T_c^*$  is about 17 K, also listed with the temperature-scaling parameter values just before Table A10.2a.

The effective upper critical field in Eq. (A10.12) can be parameterized most simply by

$$B_{c2}^{*}(t) = B_{c2}^{*}(0) (1 - t^{\nu}), \qquad (A10.14)$$

where  $B_{c2}^{*}(t=0)$  is evaluated at the designated strain  $\varepsilon_0$ . For Nb<sub>3</sub>Sn, the strain-free value of  $B_{c2}^{*}(t=0)$  (i.e., at 0 K and at  $\varepsilon_0 \equiv \varepsilon - \varepsilon_m = 0$ ) can be estimated from the values of  $B_{c2}^{*}(4.2\text{K},\varepsilon_0=0)$  listed in column 5 of Table 10.2a by using the relation  $B_{c2}^{*}(t=0,\varepsilon_0=0) \approx B_{c2}^{*}(4.2\text{K},\varepsilon_0=0)$  [1 –  $(4.2\text{K}/17\text{K})^{\nu}$ ]<sup>-1</sup>  $\approx 1.14 B_{c2}^{*}(4.2\text{K},\varepsilon_0=0)$ . (Here we have used the nearly universal value  $\nu = 1.5$ , which is appropriate for Nb<sub>3</sub>Sn.) The strain-free  $B_{c2}^{*}$  also works for small values of intrinsic strain, since the strain dependence of  $B_{c2}^{*}$  is relatively gradual compared with its temperature dependence.

The temperature-scaling parameters are the least well characterized at present. As indicated in the material just before the Scaling Parameters table A10.2a, the value v = 1.5 is fairly well established for Nb<sub>3</sub>Sn conductors, but the temperature-scaling parameter  $\eta$  is not yet, with values reported typically in the range 2 to 3.5 for different types of Nb<sub>3</sub>Sn superconductors. More standard values of  $\eta$  are expected to be determined as data correlations become available for specific classes of superconductors. In the meantime, a nominal value of  $\eta = 2.5$  can be used at least for estimation purposes. This nominal value of  $\eta$  also serves well for temperature *transformations*, particularly if they are nearby transformations, as described next.

#### <u>Temperature transformation method</u> (Sec. 10.6.3)

Similar to the strain transformation summarized earlier, the temperature transformation method is a greatly simplified technique for utilizing the temperature scaling law to transform a single  $I_c(B,t_1)$  curve, obtained at a temperature  $t_1$ , to a curve  $I_c(B',t_2)$  valid at a different temperature  $t_2$ , without the need to know the parameters p, q,  $B_{c2}^*(t=0)$ , or h(0) in Eq. (A10.12).

The transformation is independent of the parameterization scheme. Again, it is illustrated here with the parameter set employed above because of its practical utility, but it can be used with any of the alternative parameterization schemes that have been proposed for the prefactor term h(T) in the temperature scaling law [Eq. (10.36)] The temperature-transformation technique is limited to transformations carried out at a fixed strain; for combined strain and temperature transformations, see the unified scaling law summarized in the next subsection.

As for strain transformations, the application of the temperature transformation method consists of two steps. First, to obtain  $I_c(B',t_2)$ , multiply the magnetic-field data of the  $I_c(B,t_1)$  data set by the constant  $\beta$  to obtain a new set of magnetic-field values B' [ref. Eq. (10.39)]

$$B' = \beta B. \tag{A10.15}$$

Second, multiply the critical-current data of the  $I_c(B,t_1)$  set by  $\beta^{\eta-1}$  to obtain values of the critical current corresponding to the new magnetic-field values; that is [ref. Eq. (10.41)]

$$I_{c}(B',t_{2}) = \beta^{\eta-1} I_{c}(B,t_{1}).$$
(A10.16)

The constant  $\beta$  is given by [ref. Eqs. (10.42) and (10.43)]

$$\beta = \frac{B_{c2}^*(T_2)}{B_{c2}^*(T_1)} = \frac{1 - (T_2/T_c^*)^{\nu}}{1 - (T_1/T_c^*)^{\nu}}.$$
(A10.17)

(Again, for a clarification of this simple data-transformation procedure, please refer to the example given for strain in Table 10.3 in Sec. 10.6.2.) All that is needed to carry out the transformation are the scaling parameters  $T_c^*$ , v, and  $\eta$ .

As noted above, data correlations of the temperature-scaling parameters have not yet been made for many of the different classes of technological superconductors. The value v = 1.5 is fairly well established for Nb<sub>3</sub>Sn conductors and the strain-free  $T_c^*$  at  $\varepsilon_0 = 0$  is about 17 K for Nb<sub>3</sub>Sn, but the scaling parameter  $\eta$  is not so nearly universal, with values reported over the range 2 to 3.5 for a variety of Nb<sub>3</sub>Sn conductors. A nominal value of  $\eta = 2.5$  can be used for estimation purposes with most Nb<sub>3</sub>Sn superconductors.

Nevertheless, this method is quite accurate if the transformations are nearby. For example, when making the very useful data transformation from 4.2 K to, say, 5.5 K in Nb<sub>3</sub>Sn conductors, even a large error of 20 % in the value of  $\eta$  (which covers the range  $2 < \eta < 3$ ) results in a difference of only about 3.5 % in the transformed  $I_c$  (and no error in *B*). For the same example, an error of 5 % in the parameter  $T_c^*$  results in a difference of only 1.2 % in the transformed  $I_c$ , and only 0.6 % in the transformed *B*.

#### Unified strain-and-temperature dependence of the critical current (Sec. 10.7)

The combined magnetic-field, temperature, and strain dependence of the critical current of most low- $T_c$  superconductors can be modeled with the unified scaling law [Eq. (10.45)]. The simplest parameterization of this scaling law applies to the moderate intrinsic-strain range (-0.5 % <  $\varepsilon_0$  < +0.4 %, assuming  $\varepsilon_{irr} \ge +0.4$  %), which is where most superconductor applications are designed (again, because in this regime the conductors are under the least stress and their critical currents are maximized). [Extended-strain parameters covering the high-compressive-strain range ( $\varepsilon_0 < -0.5$  %) are discussed below with the unified-transformation method.] The unified scaling law is based on data in low- $T_c$  superconductors showing shape invariance of the pinningforce vs. magnetic-field characteristic with respect to both strain and temperature simultaneously.

For the moderate intrinsic-strain range, the unified scaling law can be parameterized with the separable parameter set, giving the combined magnetic-field, temperature, and strain dependence of the critical current  $I_c(B,T,\varepsilon_0)$  [ref. Eqs. (10.56)–(10.58)]

$$I_{c}(B,T,\varepsilon_{0}) = C B^{-1} (1-a|\varepsilon_{0}|^{1.7})^{s} (1-t^{\nu})^{\eta} b^{p}(1-b)^{q}$$
(A10.18)

where

$$B_{c2}^{*}(t,\varepsilon_{0}) = B_{c2}^{*}(0,0) \left(1 - a \left| \varepsilon_{0} \right|^{1.7}\right) \left(1 - t^{\nu}\right)$$
(A10.19)

and

$$\frac{T_{\rm c}^{*}(\varepsilon_{0})}{T_{\rm c}^{*}(0)} = \left(1 - a \left|\varepsilon_{0}\right|^{1.7}\right)^{\frac{1}{w}}.$$
(A10.20)

Here, C is a proportionality constant and the variables are defined by:

- $\varepsilon_0 \equiv \varepsilon \varepsilon_m$  Intrinsic strain (where  $\varepsilon$  is the applied strain and  $\varepsilon_m$  is the applied strain at the peak, all in absolute units, not percent)
- $b \equiv \frac{B}{B_{c2}^{*}(t,\varepsilon_{0})}$  Reduced magnetic field  $t \equiv \frac{T}{T_{c}^{*}(\varepsilon_{0})}.$  Reduced temperature

Equations (A10.18) through (A10.20) utilize the separable parameter set, mentioned in the introduction to this appendix, wherein the scaling parameters are separated into magneticfield, strain, and temperature-scaling parameters with consistent, independent values that are easily updated as additional strain or temperature data become available for a given conductor. With this set, parameter values can also be determined from independent strain or temperature data [rather than from a lengthy, full matrix of combined  $I_c(B,t,\varepsilon_0)$  data], which can save a month or more of data acquisition per sample. Robust methods for determining values of the separable parameter set are described in detail in Sec. 10.7.4. Because this parameterization results in such consistent values, standard values of the parameters work for many purposes when values tailored to a particular conductor are not available. These parameters are discussed in the following paragraphs.

*Magnetic-field scaling parameters*. Standard values of the magnetic-field parameters  $B_{c2}^*$  (*T*=4.2K, $\varepsilon_0$ =0), *p* and *q* are tabulated for most of the common low- $T_c$  superconductors in columns 3 to 5 of the Scaling Parameters table in A10.2a. For Nb<sub>3</sub>Sn, the parameter  $B_{c2}^*(0,0)$  can be estimated from the measured values of  $B_{c2}^*(4.2\text{K},0)$  by using Eq. (A10.19); that is,  $B_{c2}^*(0,0) \approx B_{c2}^*$  (4.2K,0)  $[1 - (4.2\text{K}/17\text{K})^{\nu}]^{-1} \approx 1.14 B_{c2}^*(4.2\text{K},0)$ . Here, we have used  $\nu = 1.5$  and  $T_c^*(0) \approx 17$  K for technical Nb<sub>3</sub>Sn conductors, as listed just before Table A10.2a.

Strain scaling parameters: Standard values of the strain parameters  $a^{-}(\varepsilon_0<0)$ ,  $a^{+}(\varepsilon_0>0)$ , and s are tabulated in columns 6, 7, and 8, respectively, of Table A10.2a. The strain-sensitivity parameters  $a^{-}$  and  $a^{+}$  are described more fully with the strain-scaling relation summarized above. The limitations of the validity of these standard strain-scaling parameter values are also summarized above (solid filaments, additive concentration dependence, and strain range). Note especially that they are limited to the moderate intrinsic strain range ( $-0.5 \% < \varepsilon_0 < +0.4 \%$ ). The more general parameterization of the unified strain-and-temperature scaling law, valid for strains extending to high compression ( $\varepsilon_0 < -0.5\%$ ), is given in Secs. 10.5.6 and 10.7.3, and is summarized in Eqs. (A10.30 – A10.32) below. As described in Sec. 10.5.6, this entails additional parameters that appear to be extrinsic in nature, and thus consistent parameter values cannot be tabulated; instead they must be fitted on a conductor-by-conductor basis.

*Temperature scaling parameters*. The temperature parameters v and w have nearly universal values, at least for technical Nb<sub>3</sub>Sn superconductors; values are listed for these two parameters just before Table A10.2a. The temperature parameters  $T_c^*(0)$  and  $\eta$  are not yet well established. As noted for the temperature scaling law above, a value for  $T_c^*(0)$  of about 17 K can be used for Nb<sub>3</sub>Sn, but this would benefit from further data correlations for given classes of superconductors. Likewise, values of  $\eta$  have been reported anywhere from 2 to 3.5 for different types of Nb<sub>3</sub>Sn superconductors, but a nominal value of  $\eta = 2.5$  can at least be used for estimation purposes and serves well for the transformation technique to nearby strains and temperatures (described just below).

*Extrinsic parameters*. This leaves the parameters  $\varepsilon_m$  and C, which are highly variable extrinsic parameters that mainly depend, respectively, on conductor geometry and heat-treatment conditions. Therefore, they must be determined on a conductor-by-conductor basis. Often  $\varepsilon_m$  can be approximated from measurements on similar conductors, or determined for a specific

conductor from a single  $I_c(\varepsilon)$  measurement at any fixed magnetic-field. The proportionality constant C can be determined from a single  $I_c$  measurement on the conductor in question (at any fixed magnetic field, temperature, and strain).

#### Unified strain-and-temperature transformation method (Sec. 10.7.5)

Similar to the transformations described above, the transformation method is a powerful technique for utilizing the unified scaling law to transform a single  $I_c(B)$  curve measured at strain  $\varepsilon_{01}$  and temperature  $T_1$ , to another combination of strain  $\varepsilon_{02}$  and temperature  $T_2$  without the need to know the parameters p, q,  $B_{c2}^*(0)$ , and C. The method is especially effective for nearby transformations, achieving high accuracy even with standard parameter values (see below). The transformation is independent of the parameterization scheme, but it is illustrated here with the separable parameter set because of its practical utility.

As shown in the example at the end of Sec. 10.7.5, the transformation is carried out in a spreadsheet program simply by multiplying a column of magnetic-field values and a column of corresponding critical-current values by two constant prefactors. That is, to transform a data set  $I_c(B,T_1,\varepsilon_{01})$ , which was obtained at temperature  $T_1$  and strain  $\varepsilon_{01}$ , to a corresponding data set  $I_c(B',T_2,\varepsilon_{02})$  valid at  $T_2$  and  $\varepsilon_{02}$ , multiply the *magnetic-field* values in the first set by the constant  $\beta$ 

$$B' = \{\beta\} B,$$
 (A10.21)

and the *critical-current* values in the first set by the constant shown in brackets { }

$$I_{c}(B',T_{2},\varepsilon_{02}) = \left\{\beta^{-1}\frac{K(T_{2},\varepsilon_{02})}{K(T_{1},\varepsilon_{01})}\right\}I_{c}(B,T_{1},\varepsilon_{01}),$$
(A10.22)

where

$$\beta = \frac{B_{c2}^{*}(T_{2}, \varepsilon_{02})}{B_{c2}^{*}(T_{1}, \varepsilon_{01})}.$$
(A10.23)

For the common case where  $\varepsilon_{01}$  and  $\varepsilon_{02}$  fall within the moderate strain range (-0.5 % <  $\varepsilon_0$  < +0.4 %), these two transformation constants {the terms in brackets in Eqs. (A10.21) and (A10.22)} can be evaluated with the separable parameter set as

$$\beta = \left(\frac{1-a|\varepsilon_{02}|^{1.7}}{1-a|\varepsilon_{01}|^{1.7}}\right) \left(\frac{1-t_2^{\nu}}{1-t_1^{\nu}}\right).$$
(A10.24)

and

$$\beta^{-1} \frac{K(T_2, \varepsilon_{02})}{K(T_1, \varepsilon_{01})} = \left(\frac{1 - a |\varepsilon_{02}|^{1.7}}{1 - a |\varepsilon_{01}|^{1.7}}\right)^{s-1} \left(\frac{1 - t_2^{\nu}}{1 - t_1^{\nu}}\right)^{\eta-1} , \qquad (A10.25)$$

Again, the variables are defined by:

 $\varepsilon_0 \equiv \varepsilon - \varepsilon_m$  Intrinsic strain (where  $\varepsilon$  is the applied strain and  $\varepsilon_m$  is the applied strain at the peak, all in absolute units, not percent)

$$t \equiv \frac{T}{T_{\rm c}^*(\varepsilon_0)}$$
 Reduced temperature

with

$$\frac{T_{\rm c}^{*}(\varepsilon_{0})}{T_{\rm c}^{*}(0)} = \left(1 - a |\varepsilon_{0}|^{1.7}\right)^{\frac{1}{w}}.$$
(A10.26)

Thus, for the moderate strain range ( $-0.5 \% < \varepsilon_0 < +0.4 \%$ ), the task of transforming both strain and temperature with Eqs. (10.21) and (10.22) is reduced to evaluating these two transformation constants from the scaling parameters:  $v, w, \eta, s, a^-, a^+, T_c^*(0)$ , and  $\varepsilon_m$ . Again, the strain parameters are given in Table A10.2a and the temperature parameters are listed for Nb<sub>3</sub>Sn just above the table. This leaves  $\varepsilon_m$  as the one extrinsic parameter that must be determined on a conductor-by-conductor basis from a single  $J_c(\varepsilon)$  measurement at any fixed magnetic field and temperature, or it can be estimated from a single  $J_c(\varepsilon)$  measurement on a similar conductor.

For transformations where either  $\varepsilon_{01}$  or  $\varepsilon_{02}$  fall in the high-compressive-strain range ( $\varepsilon_0 < -0.5$  %), a more general form must be used for the two transformation constants because of the extrinsic nature of their strain dependence in this regime. The more general parameterization [which replaces Eq. (A10.24)] for the transformation constant  $\beta$  is

$$\beta = \frac{B_{c2}^{*}(0,\varepsilon_{02})}{B_{c2}^{*}(0,\varepsilon_{01})} \left(\frac{1-t_{2}^{\nu}}{1-t_{1}^{\nu}}\right),\tag{A10.27}$$

and the more general parameterization [which replaces Eq. (A10.25)] for the critical-current transformation factor is

$$\beta^{-1} \frac{K(T_2, \varepsilon_{02})}{K(T_1, \varepsilon_{01})} = \frac{g(\varepsilon_{02})}{g(\varepsilon_{01})} \left[ \frac{B_{c2}^*(0, \varepsilon_{02})}{B_{c2}^*(0, \varepsilon_{01})} \right]^{-1} \left( \frac{1 - t_2^{\nu}}{1 - t_1^{\nu}} \right)^{\eta - 1},$$
(A10.28)

with

$$\frac{T_{c}^{*}(\varepsilon_{0})}{T_{c}^{*}(0)} = \left(\frac{B_{c2}^{*}(0,\varepsilon_{0})}{B_{c2}^{*}(0,0)}\right)^{\frac{1}{w}}.$$
(A10.29)

Any parameterization of  $B_{c2}^{*}(0,\varepsilon_{0})$  and  $g(\varepsilon_{0})$  will work with the general transformation factors given by Eqs. (A10.27)–(A10.29). The extended-range parameterizations discussed in Secs. 10.5.6 and 10.7.3 are suggested as a practical scheme that is easy to use because they preserve the consistency of the intrinsic parameter values *a* and *s* for the moderate strain range; that is,

$$\frac{B_{c2}^{*}(0,\varepsilon_{0})}{B_{c2}^{*}(0,0)} = 1 - a \left| \varepsilon_{0} \right|^{1.7} + a_{1} \left| \varepsilon_{0} - \varepsilon_{0}' \right|^{a^{2}} I(\varepsilon_{0} < \varepsilon_{0}'),$$
(A10.30)

$$\frac{g(\varepsilon_0)}{C} = [1 - a |\varepsilon_0|^{1.7}]^s + g_1 |\varepsilon_0 - \varepsilon_0'|^{g_2} I(\varepsilon_0 < \varepsilon_0').$$
(A10.31)

Here, C is the same proportionality constant as in Eq. (A10.18), and the indicator function is defined as

$$I(\varepsilon_{0} < \varepsilon_{0}') \equiv \begin{cases} 1 & \text{if } \varepsilon_{0} < \varepsilon_{0}' \\ 0 & \text{if } \varepsilon_{0} > \varepsilon_{0}' \end{cases},$$
(A10.32)

with  $\varepsilon_0' = -0.005$  for Nb<sub>3</sub>Sn. [This function is readily programmed in spreadsheet programs with a conditional clause of the form: IF( $\varepsilon_0 < -0.5\%$ , 1 if true, 0 if false).] Again, for the many applications at moderate intrinsic-strain levels, the high-compression term is not needed. This happens seamlessly with Eqs. (A10.30) and (A10.31) because the indicator function automatically drops the extra term for moderate strains, reducing these relations to the simpler power-law expressions.

The simplicity of this transformation procedure becomes readily clear by referring to the example given in Table 10.4 at the end of Sec. 10.7.5. The entire process can be carried out in a few minutes with a spreadsheet program. It is also quite accurate. For example, a relatively large error of 20 % in the temperature parameter  $\eta$  would result in an error in the  $I_c$  values of only about 3.5 % when transforming from the canonical temperature of 4.2 K to a difficult-to-measure temperature, such as 5.5 K. Likewise, when transforming from, say,  $\varepsilon_0 = -0.3$  % to 0 % in Nb<sub>3</sub>Sn conductors, a relatively large error of 10% in the value of the strain sensitivity parameter *a* would result in an error of less than 0.5% in the transformed *B* values and negligible error in the transformed  $I_c$  values. Again, with this method there is no need to determine the shape of the  $I_c$ -*B* curve, and it is independent of the extrapolation method used to determine  $B_{c2}^*$ . The method, given in general form by Eqs. (A10.21) through (A10.23), *relies only on the unified scaling law*, Eq. (10.45), not on the separable parameter set used to illustrate it here. *Thus, it* 

would readily work with any other parameterization of the prefactor  $K(T, \varepsilon_0)$  in the unified scaling law, Eq. (10.45).